Filtros : "EQUAÇÕES NÃO LINEARES" "Espanha" "ICMC" Removidos: "Indexado no PubMed" "McLaren, Bruce" "Tailândia" "Financiado pelo Government of Aragón, Spain" "Physical Review E" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, v. 33, n. 4, p. 1779-1821, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09871-2. Acesso em: 20 nov. 2024.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, 33( 4), 1779-1821. doi:10.1007/s10884-020-09871-2
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2024 nov. 20 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2024 nov. 20 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES, TEORIA DA BIFURCAÇÃO, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Aparecida Benedito. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, v. 69, p. 1-52, 2021Tradução . . Disponível em: https://ejde.math.txstate.edu/. Acesso em: 20 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2021). Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, 69, 1-52. Recuperado de https://ejde.math.txstate.edu/
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2024 nov. 20 ] Available from: https://ejde.math.txstate.edu/
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2024 nov. 20 ] Available from: https://ejde.math.txstate.edu/
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6876. Acesso em: 20 nov. 2024. , 2019
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2019). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6876
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;[citado 2024 nov. 20 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;[citado 2024 nov. 20 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6873. Acesso em: 20 nov. 2024. , 2019
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. (2019). Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6873
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues C. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. 2019 ;[citado 2024 nov. 20 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6873
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues C. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. 2019 ;[citado 2024 nov. 20 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6873
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, v. 20, n. 4, p. 1750033-1-1750033-15, 2018Tradução . . Disponível em: https://doi.org/10.1142/S021919971750033X. Acesso em: 20 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2018). Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, 20( 4), 1750033-1-1750033-15. doi:10.1142/S021919971750033X
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.[citado 2024 nov. 20 ] Available from: https://doi.org/10.1142/S021919971750033X
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.[citado 2024 nov. 20 ] Available from: https://doi.org/10.1142/S021919971750033X
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf. Acesso em: 20 nov. 2024. , 2016
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2016). Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2024 nov. 20 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2024 nov. 20 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de et al. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 439-467, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.022. Acesso em: 20 nov. 2024.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2024 nov. 20 ] Available from: https://doi.org/10.12775/tmna.2015.022
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2024 nov. 20 ] Available from: https://doi.org/10.12775/tmna.2015.022

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024