Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes (2019)
- Authors:
- Autor USP: OLIVEIRA, REGILENE DELAZARI DOS SANTOS - ICMC
- Unidade: ICMC
- Subjects: TEORIA QUALITATIVA; EQUAÇÕES NÃO LINEARES; SISTEMAS NÃO LINEARES
- Keywords: quadratic differential systems; structural stability; codimension two; phase portrait; saddle-node
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Publisher place: São Carlos
- Date published: 2019
- Source:
- ISSN: 0103-2577
-
ABNT
ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6876. Acesso em: 20 jan. 2026. , 2019 -
APA
Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2019). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6876 -
NLM
Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;[citado 2026 jan. 20 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876 -
Vancouver
Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;[citado 2026 jan. 20 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876 - Singular levels and topological invariants of Morse Bott systems on surfaces
- Limit cycles for a class of generalized Kukles discontinuous piecewise polynomial differential system
- Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines
- Global dynamical aspects of a generalized Sprott E differential system
- Global dynamical aspects of a generalized Chen-Wang differential system
- Limit cycles for two classes of control piecewise linear differential systems
- On the limit cycle of a Belousov-Zhabotinsky differential systems
- Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas
- Global dynamics of the May-Leonard system with a Darboux invariant
- Quadratic slow-fast systems on the plane
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| NOTAS_ICMC_SERIE_MAT_443_... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
