Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes (2019)
- Authors:
- Autor USP: OLIVEIRA, REGILENE DELAZARI DOS SANTOS - ICMC
- Unidade: ICMC
- Subjects: TEORIA QUALITATIVA; EQUAÇÕES NÃO LINEARES; SISTEMAS NÃO LINEARES
- Keywords: quadratic differential systems; structural stability; codimension two; phase portrait; saddle-node
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Publisher place: São Carlos
- Date published: 2019
- Source:
- ISSN: 0103-2577
-
ABNT
ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6876. Acesso em: 04 ago. 2025. , 2019 -
APA
Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2019). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6876 -
NLM
Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;[citado 2025 ago. 04 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876 -
Vancouver
Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;[citado 2025 ago. 04 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876 - The center problem for a 1: -4 resonant quadratic system
- Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system
- Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants
- The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B)
- Cyclicity of some analytic maps
- Números primos: infinitude e distribuição
- On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system
- On pairs of polynomial planar foliations
- Chaotic behavior of a generalized Sprott E differential system
- Isochronicity of a 'Z IND.2'-equivariant quintic system
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
NOTAS_ICMC_SERIE_MAT_443_... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas