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Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo

(regilene@icmc.usp.br)

Alex C. Rezende
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Abstract4

The goal of this work is to contribute to the classification of the phase portraits of pla-5

nar quadratic differential systems according to their structural stability. Artés, Kooij and Llibre6

(1998) proved that there exist 44 structurally stable topologically distinct phase portraits in the7

Poincaré disc modulo limit cycles in this family, and Artés, Llibre and Rezende (2018) showed the8

existence of at least 204 (at most 211) structurally unstable topologically distinct phase portraits9

of codimension-one quadratic systems, modulo limit cycles. In this work we begin the classification10

of planar quadratic systems of codimension two in the structural stability. Combining the groups11

of codimension-one quadratic vector fields one to each other, we obtain ten new groups. Here12

we consider group AA obtained by the coalescence of two finite singular points, yielding either a13

triple saddle, or a triple node, or a cusp point, or two saddle-nodes. We obtain all the possible14

topological phase portraits of group AA and prove their realization. We got 34 new topologically15

distinct phase portraits in the Poincaré disc modulo limit cycles.16

Key-words: quadratic differential systems, structural stability, codimension two, phase portrait,17

saddle-node.18

2000 Mathematics Subject Classification: 34C23, 34A3419

1 Introduction20

Mathematicians are fascinated in closing problems. Having a question solved or even sign with a21

“q.e.d” a question asked in the past is a pleasure which is directly proportional to the time elapsed22

between the formulation of the question and the moment of the answer.23

With the advent of the differential calculus, it opened the possibility of solving many questions that24

medieval mathematicians asked, but at the same time it made the field of questions formulated even25
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bigger. The search for primitive functions that could not be expressed algebraically or with a finite1

number of analytic terms complicated the future research lines, and even new areas of mathematics2

were created to give answers to these questions. And besides the problem of finding a primitive to a3

differential equation in a single dimension, if we add the possibility of more dimensions, the problem4

becomes much more difficult.5

Therefore, it took almost 200 years between the approach of the first linear differential equations6

and its complete resolution by Laplace in 1812. After the resolution of linear differential systems,7

for any dimension, it seemed natural to address the classification of quadratic differential systems.8

However, it was found that the problem would not have an easy and fast solution. Unlike the linear9

systems that can be solved analytically, quadratic systems (not even, therefore, those of higher10

degree) generically admit a solution of that kind, at least, with a finite number of terms.11

Therefore, for the resolution of non-linear differential systems, another strategy was chosen and12

it allowed the creation of a new area of knowledge in Mathematics: the Qualitative Theory of13

Differential Equations [25]. Since we are not able to give a concrete mathematical expression to14

the solution of a system of differential equations, this theory intends to express by means of a15

complete and precise drawing the behavior of any particle located in a vector field governed by such16

a differential equation, i.e. its phase portrait.17

Even with all the reductions made to the problem until now, there are still difficulties. The most18

expressive difficulty is that the phase portraits of differential systems may have invariant sets that19

are not punctual, as the limit cycles. A linear system cannot generate limit cycles; at most they20

can present a completely circular phase portrait where all the orbits are periodic. But a differential21

system in the plane, polynomial or not, and starting with the quadratic ones, may present several22

of these limit cycles. It is trivial to verify that there can be an infinite number of these cycles in23

non-polynomial problems, but the intuition seems to indicate that a polynomial system should not24

have an infinite number of limit cycle since it cannot have an infinite number of isolated singular25

points. And because the number of singular points is linked to the degree of the polynomial system,26

it also seems logical to think that the number of limit cycles could also have a similar link, either27

directly as the number of singular points, or even in an indirect way from the number the parameters28

of such systems.29

In 1900, David Hilbert [17, 18] proposed a set of 23 problems to be solved in the 20th century,30

and among them his well-known 16th problem asks for the maximum number of limit cycles H(n) a31

polynomial differential system in the plane with degree n may have. More than one hundred years32

after, we do not have an uniform upper bound for this generic problem, only for specific families of33

such a system.34

In 1966, Coppel [12] claimed to believe that the classification of quadratic systems should be able35

to be completed in purely algebraic terms. That is, by means of algebraic equalities and inequalities,36

it should be possible to determine the phase portrait of a quadratic system. His proclamation was37

not easy to refute at that time, since the unique finite singular points of a quadratic system can38

be found by means of the resultant that is of fourth degree, and its solutions can be calculated39

algebraically, like those of infinity. Moreover, it was known at that time to generate cycles limits by40

a Hopf bifurcation, whose conditions are also determined algebraically.41

On the other hand, in 1991, Dumortier and Fiddelears [13] showed that, starting with the quadratic42
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systems (and following all the higher-dimension systems), there exist geometric and topological1

phenomena in phase portraits of such a system whose determination cannot be fixed by means of2

algebraic expressions. More specifically, most part of the connections among separatrices and the3

occurrence of double or semi-stable limit cycles are not algebraically determinable.4

Therefore, the complete classification of quadratic systems is a very difficult task at the moment5

and it depends enormously of the culmination of Hilbert’s 16th problem, even at least partially for6

H(2).7

Even so, a lot of problems have been appearing related to quadratic systems and to which it has8

been possible to give an answer. In fact, there are more than one thousand articles published directly9

related to quadratic systems. John Reyn, from Delft University (Netherlands), was committed in10

preparing bibliography that was published several times until his retirement (see [26, 28, 29, 30, 31]).11

It is worth mentioning that in the last two decades many other articles related to quadratic systems12

have appeared, what figures that the mentioned amount of one thousand papers in that bibliography13

has already been widely exceeded.14

Many of the questions proposed and the problems solved have dealt with subclassifications of15

quadratic systems, that is, classifications of systems that shared some characteristic in common. For16

instance, we have systems with a center [33, 34], with a weak focus of third order [4, 21], with a17

nilpotent singularity [20], without real singular points [15], with two invariant lines [26] and so on,18

up to a thousand articles. In some of them complete answers could be given, including the problem19

of limit cycles (the existence and the number of limit cycles), but in other cases, the classification20

was done modulo limit cycles, that is, all the possible phase portraits without taking into account21

the presence and number of cycles. Since in quadratic systems a limit cycle can only surround a22

single finite singular point, and which must necessarily be a focus [12], then it is enough to identify23

the outermost limit cycle of a nesting of cycles with a point, and interpret the stability of that point24

as the outer stability of this cycle, and study everything that can happen to the phase portrait in25

the rest of the space.26

Within the families of quadratic systems that were studied in the 20th century, we would highlight27

the study of the structurally stable quadratic systems, modulo limit cycles. That is, the goal was to28

determine how many and which phase portraits of a quadratic system cannot be modified by small29

perturbations in their coefficients. To obtain a structurally stable system modulo limits cycles we30

need few conditions: we do not allow the existence of multiple singular points and the existence of31

connections of separatrices. Centers, weak foci, semi-stable cycles, and all other unstable elements32

are submerged in the quotient modulo limit cycles. This systematic analysis [3] showed that the33

structurally stable quadratic systems sum a total of 44 topologically distinct phase portraits.34

Once assumed that, if we get to obtain a global classification of quadratic systems before solv-35

ing Hilbert’s 16th problem, this will have to be modulo limit cycles. We proposed to carry out a36

systematic global classification and, for this, we cannot be attained only to the study of families of37

systems that do not give more than extremely local visions of global parameter space. Even applying38

to our quadratic system a linear change of coordinates plus a translation and a time rescaling, which39

supposes a reduction from the initial 12 parameters to a limited set of systems with 5 parameters,40

R
5 is still a very large space.41

There are two ways to carry out a systematic study of all the phase portraits of the quadratic42
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systems. One of them is the one initiated by Reyn in which he studied the phase portraits of all the1

quadratic systems in which all the finite singular points have coalesced with infinite singular points2

[27]. Later, he studied those in which exactly three finite singular points have coalesced with points3

of infinity, so there remains one finite and real. And then he completed the study of the cases in4

which two finite singular points have coalesced with points of infinity, originating two real points, or5

one double point, or two complex points. His work on finite multiplicity three was incomplete and6

finite multiplicity four was unaffordable.7

The other approach, instead of working from the highest degrees of degeneracy to the lower ones,8

is going in the contrary direction. We already know that the structurally stable quadratic systems9

sum 44 topologically distinct phase portrait, as we mentioned above. The natural problem to be10

studied after was the structurally unstable quadratic differential systems of codimension one. This11

study [5] was done in approximately 20 years and finally we obtained at least 204 (and at most 211)12

topologically phase portraits of codimension one modulo limit cycles.13

The next step is to study the structurally unstable quadratic systems of codimension two, modulo14

limit cycles. The approach is the same used in the previous two works [3, 5]. We start looking for all15

the topologically possible phase portraits of codimension two, and then try to realize all of them or16

show that some of them are impossible.17

Since there are 19 cases of codimension two to be analyzed, it should be impracticable to perform18

a single paper with all the results. So we decided to split it in several papers, and this present article19

is the first one of this series.20

In what follows, we recall some definition and notation used in this paper, and then we explain21

all these 19 cases of structurally unstable quadratic systems of codimension two, one by one, and22

present the completion of the first case.23

Let X be a vector field. A point p ∈ R
2 such that X(p) = 0 (respectively X(p) 6= 0) is called a24

singular point (respectively regular point) of the vector field X.25

Let Pn(R2) be the set of all polynomial vector fields on R
2 of the form X(x, y) = (P (x, y), Q(x, y)),26

with P and Q polynomials in the variables x and y of degree at most n (with n ∈ N). In this set27

we consider the coefficient topology by identifying each vector field X ∈ Pn(R2) with a point of28

R
(n+1)(n+2) (see more details in [5]).29

For X ∈ Pn(R2), we consider the Poincaré compactified vector field p(X) corresponding to X as30

the vector field induced on S
2 as described in [1, 5, 14, 16, 32]). Concerning this, a singular point q of31

X ∈ Pn(R2) is called infinite (respectively finite) if it is a singular point of p(X) in S
1 (respectively32

in S
2 \ S1).33

Now, we present the local classification of the singular points of p(X). Let q be a singular point34

of p(X).35

The classical definitions are:36

• q is non-degenerate if det (Dp(X)(q)) 6= 0, i.e. the determinant of the linear part of p(X) at37

the singular point q is nonzero;38

• q is hyperbolic if the two eigenvalues of Dp(X)(q) have real part different from 0;39

• q is semi-hyperbolic if exactly one eigenvalue of Dp(X)(q) is equal to 0.40
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However, we also may use new notation introduced in [7] directly related to the Jacobian matrix1

of the singularity. We have:2

• q is elemental if both of its eigenvalues are non-zero;3

• q is semi-elemental if exactly one of its eigenvalues equals to zero;4

• q is nilpotent if both of its eigenvalues are zero, but its Jacobian matrix at this point is non-5

identically zero;6

• q is intricate if its Jacobian matrix is identically zero;7

• q is an elemental saddle if det (Dp(X)(q)) < 0, i.e. the product of the eigenvalues of Dp(X)(q)8

is negative;9

• q is an elemental antisaddle if det (Dp(X)(q)) > 0 and the neighborhood of q is not formed by10

periodic orbits, in which case we would call it a center, i.e., it is either a node or a focus.11

The intricate singularities are usually called in the literature linearly zero. We use here the term12

intricate to indicate the rather complicated behavior of phase curves around such a singularity.13

Remark 1. Saddles have always (topological) index −1 and antisaddles have index +1 (see [14, 19]14

for the definition of index of a singular point).15

We encourage the reader to recall the definition of characteristic directions and finite sectoral16

decomposition of vector fields p(X) ∈ Pn(S2) (or X ∈ Pn(R2)) (for instance, see [14]).17

Let p(X) ∈ Pn(S2) (respectively X ∈ Pn(R2)). A separatrix of p(X) (respectively X) is an orbit18

which is either a singular point (respectively a finite singular point), or a limit cycle, or a trajectory19

which lies in the boundary of a hyperbolic sector at a singular point (respectively a finite singular20

point). Neumann [22] proved that the set formed by all separatrices of p(X), denoted by S(p(X)),21

is closed. The open connected components of S2 \ S(p(X)) are called canonical regions of p(X). We22

define a separatrix configuration as the union of S(p(X)) plus one representative solution chosen from23

each canonical region. Two separatrix configurations S1 and S2 of vector fields of Pn(S2) (respectively24

Pn(R2)) are said to be topologically equivalent if there is an orientation-preserving homeomorphism25

of S2 (respectively R
2) which maps the trajectories of S1 onto the trajectories of S2.26

We define skeleton of separatrices as the union of S(p(X)) without the representative solution of27

each canonical region. Thus, a skeleton of separatrices can still produce different separatrix config-28

urations.29

In this paper we call a heteroclinic orbit as a separatrix which starts and ends on different points30

and a homoclinic orbit as a separatrix which starts and ends at the same point. A loop is formed by a31

homoclinic orbit and its associated singular point. These orbits are also called separatrix connections.32

A vector field p(X) ∈ Pn(S2) is said to be structurally stable with respect to perturbations in33

Pn(S2) if there exists a neighborhood V of p(X) in Pn(S2) such that p(Y ) ∈ V implies that p(X)34

and p(Y ) are topologically equivalent; that is, there exists a homeomorphism of S2, which preserves35

S
1, carrying orbits of the flow induced by p(X) onto orbits of the flow induced by p(Y ), preserving36

sense but not necessarily parameterization.37
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Since in this paper we are interested in the classification of the structurally unstable quadratic1

vector fields of codimension two, we recall the concept of quadratic vector fields of lower codimension2

in structurally stability.3

Recalling the works of Peixoto [23], restricted to the class of the quadratic vector fields, we have4

the following result:5

Theorem 1. Consider p(X) ∈ Pn(S2) (or X ∈ Pn(R2)). This system is structurally stable if and6

only if7

(i) the finite and infinite singular points are hyperbolic;8

(ii) the limit cycles are hyperbolic;9

(iii) there are no saddle connections.10

Moreover, the structurally stable systems form an open and dense subset of Pn(S2) (or Pn(R2)).11

The studies done up to now on structurally stable systems and codimension one systems are12

modulo limit cycles, so it is sufficient to consider only conditions (i) and (iii) of Theorem 1. We refer13

to these conditions as stable objects.14

According to [3] there are 44 topologically distinct structurally stable quadratic vector fields.15

Concerning the codimension one quadratic vector fields, we allow the break of only one stable object.16

In other words, a quadratic vector field X is structurally unstable of codimension one modulo limit17

cycles if and only if18

(I) It has one and only one structurally unstable object of codimension one, i.e. one of the following19

types:20

(I.1) a saddle-node q of multiplicity two with ρ0 = (∂P/∂x + ∂Q/∂y)q 6= 0;21

(I.2) a separatrix from one saddle point to another;22

(I.3) a separatrix forming a loop for a saddle point with ρ0 6= 0 evaluated at the saddle.23

(II) It has no structurally unstable limit cycles, saddle-point separatrices forming a loop, or singular24

points other than those listed in (I).25

(III) If the vector field has a saddle-node, none of its separatrices may go to a saddle point and no26

two separatrices of the saddle-node are continuation one of the other.27

In what follows, instead of talking about codimension one modulo limit cycles, we will simply say28

codimension one∗.29

As described in Chapter 5 of [5], the codimension one∗ quadratic vector fields can be allocated30

in four groups, according to the bifurcations that occur to the singular points of structurally stable31

quadratic vector fields X.32

(A) When a finite saddle and a finite node of X coalesce and disappear.33
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(B) When an infinite saddle and an infinite node of X coalesce and disappear.1

(C) When a finite saddle (respectively node) and an infinite node (respectively saddle) of X coalesce2

and then they exchange positions.3

(D) When we have a saddle-to-saddle connection. This group is split into five subgroups according4

to the type of the connection: (a) finite-finite (heteroclinic orbit), (b) loop (homoclinic orbit),5

(c) finite-infinite, (d) infinite-infinite between symmetric points and (e) infinite-infinite between6

adjacent points.7

Recalling the main result in [5], the phase portraits in all these four groups sum up 211 topological8

distinct ones, where 204 of these total are proved to be realizable and the remaining 7 are conjectured9

to be impossible.10

The next step is to classify, modulo limit cycles, the codimension two quadratic vector fields.11

Since the concept of codimension applied to topological phase portraits of quadratic vector fields12

can become a little weird if we continue in this same way, we better give a better definition of13

codimension.14

Definition 1. We say that a phase portrait of a quadratic vector field is structurally stable if any15

sufficiently small perturbation in the parameter space leaves the phase portrait topologically equivalent16

the previous one.17

Definition 2. We say that a phase portrait of a quadratic vector field is structurally unstable of18

codimension k if any sufficiently small perturbation in the parameter space either leaves the phase19

portrait topologically equivalent the previous one or it moves it to a lower codimension one, and there20

is at least one perturbation that moves it to the codimension k − 1.21

Remark 2. 1. When applying these definitions, modulo limit cycles, to phase portraits with cen-22

ters, it would say that some phase portraits with centers would be of codimension as low as23

two, while geometrically they occupy a much smaller region in R
12. So, the best way to avoid24

inconsistencies in the definitions is to tear apart the phase portraits with centers, that we know25

they are in number 31 [33], and just work with systems without centers.26

2. Starting in cubic systems, the definition of topologically equivalence, modulo limit cycles, be-27

comes more complicated since we can have limit cycles having only one singularity in its interior28

or more than one. So we cannot collapse the limit cycle because its interior is also relevant for29

the phase portrait.30

3. Moreover, our definition of codimension needs also more precision starting with cubic systems31

due to new phenoma that may happen there.32

Then, according to this definition concerning codimension two, and the previously known results33

of codimension one, we have the result:34

Theorem 2. A polynomial vector field in P2(R2) is structurally unstable of codimension two modulo35

limit cycles if and only if all its objects are stable except for the break of exactly two stable objects. In36

other words, we allow the presence of two unstable objects of codimension one or one of codimension37

two.38
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Combining the groups of codimension one∗ quadratic vector fields one to each other, we obtain 101

new groups, where one of them is split into 15 subgroups, according to Tables 1 and 2.2

Table 1: Families of structurally unstable quadratic vector fields of codimension two considered from combi-

nations of the groups of codimension one∗: A, B, C and D (which in turn is split into a, b, c, d and e)

A B C D

A AA - - -

B AB BB - -

C AC BC CC -

D AD (5 cases) BD (5 cases) CD (5 cases) see Table 2

Table 2: Families of structurally unstable quadratic vector fields of codimension two in the group DD (see

Table 1)

a b c d e

a (aa)

b (ab) (bb)

c (ac) (bc) (cc)

d (ad) (bd) (cd) (dd)

e (ae) (be) (ce) (de) (ee)

Analogously, instead of talking about codimension two modulo limit cycles, we will simply say3

codimension two∗.4

Geometrically, the codimension two∗ groups can be described as follows. Let X be a codimension5

one∗ quadratic vector field. We have the following families:6

(AA) Either when a finite saddle (respectively a finite node) of X coalesces with the finite saddle-7

node, giving birth to a semi-elemental triple saddle: s(3) (respectively a triple node: n(3)), or8

when both separatrices of the saddle-node limiting its parabolic sector coalesce, giving birth9

to a cusp of multiplicity two: ĉp(2), or when another finite saddle-node is formed, having then10

two finite saddle-nodes: sn(2)+sn(2). Since the phase portraits with s(3) and with n(3) would11

be topologically equivalent to structurally stable phase portraits and we are mainly interested12

in new phase portraits, we will skip them in this classification. Anyway, we may find them in13

the papers [9] and [10].14

(AB) When an infinite saddle and an infinite node of X coalesce plus a finite saddle-node: sn(2)+15

(0
2

)
SN .16

(AC) When we have a finite saddle-node and when a finite saddle (respectively node) and an infinite17

node (respectively saddle) of X coalesce: sn(2)+
(1
1

)
SN .18

(AD) When we have a finite saddle-node plus a separatrix connection, considering all five types of19

group D.20
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(BB) When an infinite saddle (respectively an infinite node) of X coalesces with an existing infinite1

saddle-node
(
0
2

)
SN , leading to a triple saddle:

(
0
3

)
S (respectively a triple node:

(
0
3

)
N).2

(BC) When a finite antisaddle (respectively finite saddle) of X coalesces with an existing infinite3

saddle-node
(0
2

)
SN , leading to a nilpotent elliptic saddle

(̂1
2

)
E−H (respectively nilpotent saddle4

(̂1
2

)
HHH −H). Or it may also happen that a finite saddle (respectively node) coalesces with5

an elemental node (respectively saddle) in a phase portrait having already an
(
0
2

)
SN , having6

then in total
(1
1

)
SN +

(0
2

)
SN .7

(BD) When we have an infinite saddle-node
(0
2

)
SN plus a separatrix connection, considering all five8

types of group D.9

(CC) Either when a finite saddle (respectively finite node) of X coalesces with an existing infinite10

saddle-node
(1
1

)
SN , leading to an semi-elemental triple saddle

(2
1

)
S (respectively an semi-11

elemental triple node
(2
1

)
N), or when a finite saddle (respectively node) and an infinite node12

(respectively saddle) of X coalesce plus an another existing infinite saddle-node
(1
1

)
SN , leading13

to two infinite saddle-nodes
(1
1

)
SN+

(1
1

)
SN .14

(CD) When we have an infinite saddle-node
(1
1

)
SN plus a saddle to saddle connection, considering15

all five types of group D.16

(DD) When we have two saddle to saddle connections, which are grouped as follows:17

(aa) two finite-finite heteroclinic connections;18

(ab) a finite-finite heteroclinic connection and a loop;19

(ac) a finite-finite heteroclinic connection and a finite-infinite connection;20

(ad) a finite-finite heteroclinic connection and an infinite-infinite connection between symmet-21

ric points;22

(ae) a finite-finite heteroclinic connection and an infinite-infinite connection between adjacent23

points;24

(bb) two loops;25

(bc) a loop and a finite-infinite connection;26

(bd) a loop and an infinite-infinite connection between symmetric points;27

(be) a loop and an infinite-infinite connection between adjacent points;28

(cc) two finite-infinite connections;29

(cd) a finite-infinite connection and an infinite-infinite connection between symmetric points;30

(ce) a finite-infinite connection and an infinite-infinite connection between adjacent points;31

(dd) two infinite-infinite connections between symmetric points;32

(de) an infinite-infinite connection between symmetric points and an infinite-infinite connection33

between adjacent points;34

(ee) two infinite-infinite connections between adjacent points.35
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Some other of these cases have also been proved to be empty in an on course paper.1

The main goal of this paper is to present the global phase portraits of the vector fields X ∈ P2(R
2)2

belonging to the group AA and make sure that they are realizable.3

Let
∑2

0 denote the set of all planar structurally stable vector fields and
∑2

i (S) denote the set of4

all structurally unstable vector fields X ∈ P2(R
2) of codimension i, modulo limit cycles belonging5

to the group S, where S is a group of vector field with the same type of instability, for instance,6

X ∈ ∑2
2(AA) denote the set of all structurally unstable vector fields X ∈ P2(R2) of codimension7

two∗ belonging to the group AA.8

With all of these we can formulate the next theorem.9

Theorem 3. If X ∈ ∑2
2(AA) \∑2

0, then its phase portrait on the Poincaré disc is topologically10

equivalent modulo orientation and modulo limit cycles to one of the 34 phase portraits of Figures 111

and 2, and all of them are realizable.12

In Section 2, we make a brief description of phase portraits of codimensions zero and one that13

are needed in this paper. In Section 3, we make the list of topologically possible phase portraits of14

codimension two in family AA, removing already some which are proved impossible, and in Section15

4, we prove the realization of all of them but one, which is proved to be impossible with a more16

detailed argument.17

2 Quadratic vector fields of codimension zero and one18

In this section we summarize all the needed results from the book of Artés, Llibre and Rezende [5].19

The following result is a restriction of Theorem 1.1 of [5] to the group A. We denote by
∑2

1(A)20

the set of all structurally unstable vector fields X ∈ P2(R2) of codimension one∗ belonging to the21

group A.22

Theorem 4. If X ∈
∑2

1(A), then its phase portrait on the Poincaré disc is topologically equivalent23

modulo orientation and modulo limit cycles to one of the 70 phase portraits of Figures 3 to 5, and24

all of them are realizable.25

The next result describes which phase portraits were discarded in [5] because they were not re-26

alizable, but their role now is important in the process of discarding impossible phase portraits of27

codimension two∗.28

Theorem 5. In order to obtain a phase portrait of a structurally unstable quadratic vector field of29

codimension one∗ from group A it is necessary and sufficient to coalesce a finite saddle and a finite30

node from a structurally stable quadratic vector field, which leads to a finite saddle-node, and after31

some small perturbation it disappears. For the vector fields in this group, the following statements32

hold.33

(a) In Table 3 we may see in the first and fifth columns the structurally stable quadratic vector34

fields (following the notation present in [3, 5]) which, after the bifurcation cited above, lead to35

at least one phase portrait of codimension one∗ from group A.36
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2
AA,19 U

2
AA,20

U
2
AA,21 U

2
AA,22 U

2
AA,23 U

2
AA,24

Figure 1: Structurally unstable quadratic phase portraits of codimension two∗ of family AA

(b) Inside this group A, we have a total of 77 topologically distinct phase portraits according to the1

different α-limit or ω-limit of the separatrices of their saddles, 7 of which are non-realizable2

(they are given in Table 4). These numbers are given in the second and sixth columns of Table 3.3
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U
2
AA,25 U

2
AA,26 U

2
AA,27 U

2
AA,28

U
2
AA,29 U

2
AA,30 U

2
AA,31 U

2
AA,32

U2
AA,33 U

2
AA,34

Figure 2: (Cont.) Structurally unstable quadratic phase portraits of codimension two∗ of family AA

(c) From these numbers of possible phase portraits, most of them are realizable. That is, even1

though there is the topological possibility of their existence, some of them break some analytical2

property which makes them not realizable inside quadratic vector fields. We have a total of 703

realizable phase portraits. In the third and seventh columns of Table 3 we present the number4

of realizable cases coming from the bifurcation of each structurally stable phase portrait, and5

in the fourth and eighth columns we present the bifurcated phase portraits of codimension one∗6

associated to each one.7

(d) There are then 7 non-realizable cases from group A which we now collect in a single picture8

(see Figure 6) and denote by U
1
I,b, where U

1
I stands for Impossible of codimension one∗ and9

b ∈ {1, 2, 3, 103, 104, 105, 106}. These phase portraits are all drawn in [5], distributed along10

the paper having already the notation given above. Anyway, we provide Table 4 in order to11

relate easily (giving also the page where they appear first and the page they are proved to be12

impossible).13

An important result to study the impossibility of some phase portraits is Corollary 3.29 of [5].14

Corollary 1. If one of the structurally stable vector fields that bifurcates from a possible struc-15

turally unstable vector field of codimension one is not realizable, then this unstable system is also not16

realizable.17

This corollary can easily be adapted for higher codimensions.18

Theorem 6. If one of the phase portraits of codimension k that bifurcates from a possible codimen-19

sion k + 1 phase portrait is not realizable, then this latter phase portrait is also not realizable.20

12



Table 3: Possible and realizable bifurcated phase portraits for a given structurally stable quadratic

vector field. In this table, SSQVF stands for structurally stable quadratic vector fields, #p (re-

spectively #r) for the number of topologically possible (respectively realizable) phase portraits of

codimension one∗ bifurcated from the respective SSQVF, and SU1 for the respective phase portraits

of codimension one∗

SSQVF [3] #p #r SU1 [5] SSQVF [3] #p #r SU1 [5]

S
2
2,1 1 1 U

1
A,1 S

2
10,6 2 2 U

1
A,34,U

1
A,35

S
2
3,1 3 3 U

1
A,2,U

1
A,3,U

1
A,4 S

2
10,7 4 3 U

1
A,36,U

1
A,37,U

1
A,38

S
2
3,2 1 1 U

1
A,5 S

2
10,8 1 1 U

1
A,39

S
2
3,3 1 1 U

1
A,6 S

2
10,9 2 2 U

1
A,40,U

1
A,41

S
2
3,4 1 1 U

1
A,7 S

2
10,10 4 2 U

1
A,42,U

1
A,43

S
2
3,5 3 3 U

1
A,8,U

1
A,9,U

1
A,10 S

2
10,11 1 1 U

1
A,44

S25,1 3 3 U1
A,11,U

1
A,12,U

1
A,13 S210,12 2 2 U1

A,45,U
1
A,46

S
2
7,1 1 1 U

1
A,14 S

2
10,13 4 4 U

1
A,47,U

1
A,48,U

1
A,49,U

1
A,50

S
2
7,2 2 2 U

1
A,15,U

1
A,16 S

2
10,14 4 3 U

1
A,51,U

1
A,52,U

1
A,53

S
2
7,3 1 1 U

1
A,17 S

2
10,15 1 1 U

1
A,54

S
2
7,4 1 1 U

1
A,18 S

2
10,16 1 1 U

1
A,55

S
2
9,1 1 1 U

1
A,19 S

2
12,1 2 2 U

1
A,56,U

1
A,57

S
2
9,2 1 1 U

1
A,20 S

2
12,2 3 3 U

1
A,58,U

1
A,59,U

1
A,60

S
2
9,3 1 1 U

1
A,21 S

2
12,3 2 2 U

1
A,61,U

1
A,62

S
2
10,1 3 3 U

1
A,22,U

1
A,23,U

1
A,24 S

2
12,4 3 2 U

1
A,63,U

1
A,64

S
2
10,2 2 2 U

1
A,25,U

1
A,26 S

2
12,5 2 2 U

1
A,65,U

1
A,66

S
2
10,3 3 2 U

1
A,27,U

1
A,28 S

2
12,6 2 2 U

1
A,67,U

1
A,68

S
2
10,4 2 2 U

1
A,29,U

1
A,30 S

2
12,7 3 2 U

1
A,69,U

1
A,70

S
2
10,5 3 3 U

1
A,31,U

1
A,32,U

1
A,33

Table 4: Non-realizable phase portraits from group A which bifurcate from structurally stable

quadratic vector fields. The first and fourth columns indicate the structurally stable quadratic vector

field (SSQVF) which suffers a bifurcation, the second and fifth columns indicate the pages where they

appear in [5] and the third and sixth columns present the corresponding impossible phase portraits

SSQVF [3] Page [5] Impossible [5] SSQVF [3] Page [5] Impossible [5]

S
2
10,3 78 U

1
I,1 S

2
10,14 87 U

1
I,3

S
2
10,7 (82) 213 U

1
I,103 S

2
12,4 (90) 214 U

1
I,105

S
2
10,10 84; 215 U

1
I,2;U

1
I,104 S

2
12,7 (91) 212 U

1
I,106
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A,8

U
1
A,9 U

1
A,10 U

1
A,11 U

1
A,12

U1
A,13 U

1
A,14 U

1
A,15 U

1
A,16

U
1
A,17 U

1
A,18 U

1
A,19 U

1
A,20

U
1
A,21 U

1
A,22 U

1
A,23 U

1
A,24

Figure 3: Unstable quadratic systems of codimension one∗ (cases with a finite saddle-node)

3 Proof of Theorem 3: the topologically possible phase portraits1

Here we consider all 70 realizable structurally unstable quadratic vector fields of codimension one∗2

from group A.3

Considering all the different ways to obtain phase portraits belonging to group AA of codimension4
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1
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1
A,27 U

1
A,28

U
1
A,29 U

1
A,30 U

1
A,31 U

1
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U
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A,33 U

1
A,34 U

1
A,35 U

1
A,36

U1
A,37 U

1
A,38 U

1
A,39 U

1
A,40

U
1
A,41 U

1
A,42 U

1
A,43 U

1
A,44

U
1
A,45 U

1
A,46 U

1
A,47 U

1
A,48

Figure 4: (Cont.) Unstable quadratic systems of codimension one∗ (cases with a finite saddle-node)

two∗, it is necessary to consider all possible ways of coalescing singular points. We split group AA1

into four subgroups as follows:2

(AAs) X ∈ ∑2
2(AA) possessing a triple saddle s(3), resulting from the coalescence of a finite saddle3

with the finite saddle-node in the direction of its center manifold;4

15
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1
A,49 U

1
A,50 U

1
A,51 U

1
A,52

U
1
A,53 U

1
A,54 U

1
A,55 U

1
A,56

U
1
A,57 U

1
A,58 U1

A,59 U
1
A,60

U
1
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1
A,62 U
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1
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U
1
A,65 U

1
A,66 U

1
A,67 U

1
A,68

U
1
A,69 U

1
A,70

Figure 5: (Cont.) Unstable quadratic systems of codimension one∗ (cases with a finite saddle-node)

(AAn) X ∈∑2
2(AA) possessing a triple node n(3), resulting from the coalescence of a finite node with1

the finite saddle-node in the direction of its center manifold;2

(AAcp) X ∈∑2
2(AA) possessing a cusp of multiplicity two ĉp(2), resulting from the coalescence of the3

two separatrices of the saddle-node having the same stability;4
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U
1
I,1 U

1
I,2 U

1
I,3 U

1
I,103

U
1
I,104 U

1
I,105 U

1
I,106

Figure 6: Phase portraits of the non-realizable structurally unstable quadratic vector fields of codimension

one∗ from group A

(AAsnsn) X ∈
∑2

2(AA) possessing two finite saddle-nodes sn(2)+sn(2), resulting from the coalescence of1

a finite saddle with a finite node plus the existing finite saddle-node.2

The next result is a useful tool when working with structurally unstable quadratic vector fields of3

codimension two∗ possessing a triple singular point (s(3) or n(3)). Although it is stated for general4

polynomial vector fields, we will use it only for quadratic ones.5

Lemma 1. Assume that a polynomial vector field X has a finite singular point p being a semi-6

elemental triple saddle s(3) (respectively triple node n(3)), and this is the only unstable element.7

(a) Any perturbation of X in a sufficiently small neighborhood of this point will produce either8

a structurally stable system (with two saddles and one node (respectively one saddle and two9

nodes), or with only one saddle (respectively one node) in the neighborhood), or a structurally10

unstable system of codimension one (with one saddle-node and one saddle (respectively one11

saddle-node and one node)), or a system topologically equivalent to X.12

(b) All these possibilities of structurally stable systems and of structurally unstable systems of13

codimension one∗ are realizable.14

(c) If the triple saddle s(3) (respectively triple node n(3)) is the only unstable object of codimension15

two in the region of definition and we consider the perturbation which leaves a saddle-node and16

a saddle (respectively a saddle-node and a node) in the small neighborhood, then the parabolic17

sector of the saddle-node (respectively the node) is the ω-limit or α-limit (depending on its18

stability) of at least one of the separatrices of the saddle (respectively of the central manifold19

of the saddle-node). We will say that the saddle (respectively, the node) is linked with the20

saddle-node.21

Proof. Statement (a) is proved in [2] (Theorem 35).22

To prove statement (b) we consider system23

x′ = P (x, y),

y′ = y + Q(x, y),
(1)

17



with P and Q polynomials starting on degree two such that ∂2P/∂x2|(0,0) = 0, ∂2Q/∂x2|(0,0) 6= 01

and ∂2P/∂x∂y|(0,0) 6= 0. This system is the normal form for vector fields with a semi-elemental2

triple singular point at the origin. Thus, P (x, y) and Q(x, y) may be written as P (x, y) = 2hxy +3

P1(x, y) and Q(x, y) = lx2 + Q1(x, y), with hl 6= 0 and ∂2P1/∂x
2|(0,0) = 0, ∂2Q1/∂x

2|(0,0) = 0 and4

∂2P1/∂x∂y|(0,0) = 0. Then, by means of the change x → x we may assume h > 0. It follows from5

Section 2.11 of [24] that if l > 0, we have a triple saddle, and if l < 0, we have a triple node.6

We fix l > 0, so system (1) possess a triple saddle. The case l < 0 is analogous. Then, we consider7

the perturbed system for ε > 0 small enough:8

x′ = εx2 + 2hxy + P1(x, y) = F (x, y),

y′ = y + lx2 + Q1(x, y) = G(x, y).
(2)

Then, system (2) possesses two singular points in any sufficiently small neighborhood of the origin:9

(0, 0) and (ε/(2hl)+O(ε2),−ε2/(4h2l)+O(ε3)). By the same result of [24], the origin is a saddle-node.10

Moreover, the Jacobian matrix of (2) evaluated at the other singular point is:11

(
ε2/(2hl) + O(ε3) ε/l + O(ε2)

ε/h + O(ε2) 1 + O(ε)

)
,

whose determinant is −ε2/(2hl) + O(ε3). So, for ε > 0 sufficiently small, this singular point is a12

saddle.13

In order to complete the proof of this statement, we need to guarantee that this saddle-node can14

be either split into a saddle and a node or disappear, after applying a convenient perturbation. But15

this is done in Lemma 3.24 of [5].16

Now, to prove statement (c), we recall that Lemma 3.24(c) of [5] assures that, after applying a17

convenient small perturbation to a saddle-node, it leaves a saddle and a node, in which case this node18

is the α-limit or ω-limit of at least one of the separatrices of the saddle. In this sense, having a triple19

saddle (respectively a triple node), from statement (a) above, there exists a perturbation which leaves20

two saddles and a node s1 +n+s2 (respectively a saddle and two nodes n1 +s+n2). Moreover, from21

this configuration of singular points, we can generate the following new configurations: s1n(2) + s2 or22

s2n(2)+s1 (respectively sn1(2)+n2 or sn2(2)+n1). Applying Lemma 3.24(c) of [5] to the saddle-node23

of each configuration, we obtain that the node n (respectively the saddle s) is linked to the saddles24

s1 and s2 (respectively the nodes n1 and n2). Then, we conclude that, after a perturbation of the25

triple saddle (respectively triple node), leading to a saddle-node and a saddle (respectively a saddle-26

node and a node), the parabolic sector of the saddle-node (respectively the node) is the α-limit or27

ω-limit of at least one of the separatrices of the saddle (respectively of the central manifold of the28

saddle-node).29

3.1 Cases AAs and AAn
30

In the classes AAs and AAn, the unstable object of codimension two∗ is either a triple saddle s(3)31

or triple node n(3).32

By Lemma 1(c), the only way we can coalesce a saddle-node and a saddle or a node is by moving33

them towards one another along the orbit linking both of them. We will name provisionally the phase34

portraits which appear here as AAs
b and AAn

b , where b is a cardinal.35

18



Starting from a phase portrait of codimension one∗ of group A, we coalesce the saddle-node with1

the saddle (respectively the node), obtaining a phase portrait of codimension two∗ with a triple2

saddle (respectively, with a triple node), and then separating this point into a saddle (respectively3

a node) plus a saddle-node, we get a phase portrait of codimension one∗ also belonging to group A.4

Moreover, these unfoldings of codimension one∗ appear in pairs and each pair is linked by a single5

codimension two phase portrait.6

Lemma 2. Each phase portrait from the classes AAs and AAn, shown in Figure 7, is topologically7

equivalent to one of the 44 structurally stable phase portraits in [3]. In Table 5 we present these8

equivalences, as well as the unfoldings of codimension one∗.

AAs
1 AAs

2 AAs
3 AAs

4

AAs
5

AAn
1 AAn

2 AAn
3

AAn
4 AAn

5 AAn
6 AAn

7

Figure 7: Unstable phase portraits from cases AAs and AAn

9

Proof. Using the technique of coalescing singular points, as in [3, 5], we obtain all the topological10

phase portraits in Figure 7.11

3.2 Case AAcp
12

In the class AAcp, the unstable object of codimension two∗ is a cusp ĉp(2). It is important to mention13

that here we are using the notation used in the book [8].14

Starting from a phase portrait of codimension one∗ of group A, we coalesce the two separatrices15

of the saddle-node having the same stability, obtaining a phase portrait of codimension two∗ with16

a cusp, and then separating these separatrices, we get a phase portrait of codimension one∗ also17

belonging to group A. Moreover, these unfoldings of codimension one∗ appears in pairs in a one-18

to-one correspondence, that is, giving a phase portrait of codimension one∗ of group A, we can19

correspond one and only phase portrait of codimension one∗ by passing through the family AAcp.20

19



Table 5: Topologically equivalence between phase portraits of codimension two∗ of classes AAs and

AAn and structurally stable phase portraits (of codimension zero) in [3]. In the third column, we

present the corresponding unfoldings of codimension one∗.
Cod-2∗ phase portrait Top. equiv. cod 0 Unfoldings of cod 1∗

AAs
1 S

2
2.1 U

1
A,3; U

1
A,4; U

1
A,7

AAs
2 S

2
6.1 U

1
A,15; U

1
A,16

AAs
3 S

2
9.3 U

1
A,23; U

1
A,24; U

1
A,49; U

1
A,50

AAs
4 S

2
9.1 U

1
A,32; U

1
A,33; U

1
A,52; U

1
A,53

AAs
5 S

2
9.2 U

1
A,47;U

1
A,48

AAn
1 S

2
2.1 U

1
A,2; U

1
A,3

AAn
2 S

2
4.1 U

1
A,11; U

1
A,12

AAn
3 S

2
9.3 U

1
A,22; U

1
A,23

AAn
4 S

2
9.1 U

1
A,27; U

1
A,28; U

1
A,31; U

1
A,32

AAn
5 S

2
11.1 U

1
A,56; U

1
A,57

AAn
6 S

2
11.3 U

1
A,58; U

1
A,60; U

1
A,61

AAn
7 S

2
11.2 U

1
A,65; U

1
A,66

In order to do this coalescence of separatrices of the nodal sector of the saddle-node cannot receive1

any other separatrix. See for example phase portrait U
1
A,3 to find such impossibility.2

All the phase portraits with a cusp were already studied in the paper of Jager [20], even of higher3

codimension than two and including other finite nilpotent singular points. So we could have relied4

on this paper and simply extract the codimension-two examples, but since we have found a gap in5

that paper and some phase portraits are missing (even though their are not of codimension two), we6

have preferred to obtain all the topological possibilities using a different proceeding and latter check7

that they fit with the results of Jager.8

Phase portrait U1
A,1 produces phase portrait AAcp

1 (see Figure 8) and after bifurcation we get phase9

portrait U
1
A,1.10

U
1
A,1U

1
A,1 AAcp

1

Figure 8: Unstable phase portrait AAcp
1

Phase portrait U1
A,2 produces phase portrait AAcp

2 (see Figure 9) and after bifurcation we get phase11

portrait U
1
A,9.12

20



U
1
A,2 U

1
A,9AAcp

2

Figure 9: Unstable phase portrait AAcp
2

Phase portrait U
1
A,5 produces phase portrait AAcp

3 (see Figure 10) and after bifurcation we get1

phase portrait U
1
A,6.2

U
1
A,5 U

1
A,6AAcp

3

Figure 10: Unstable phase portrait AAcp
3

Phase portrait U
1
A,11 produces phase portrait AAcp

4 (see Figure 11) and after bifurcation we get3

phase portrait U
1
A,11.4

U
1
A,11U

1
A,11 AAcp

4

Figure 11: Unstable phase portrait AAcp
4

Phase portrait U
1
A,17 produces phase portrait AAcp

5 (see Figure 12) and after bifurcation we get5

phase portrait U
1
A,18.6

U
1
A,17 U

1
A,18AAcp

5

Figure 12: Unstable phase portrait AAcp
5

Phase portrait U
1
A,20 produces phase portrait AAcp

6 (see Figure 13) and after bifurcation we get7

21



phase portrait U
1
A,21.1

U
1
A,20 U

1
A,21AAcp

6

Figure 13: Unstable phase portrait AAcp
6

Phase portrait U
1
A,22 produces phase portrait AAcp

7 (see Figure 14) and after bifurcation we get2

phase portrait U
1
A,36.3

U
1
A,22 U

1
A,36AAcp

7

Figure 14: Unstable phase portrait AAcp
7

Phase portrait U
1
A,25 produces phase portrait AAcp

8 (see Figure 15) and after bifurcation we get4

phase portrait U
1
A,41.5

U
1
A,25 U

1
A,41AAcp

8

Figure 15: Unstable phase portrait AAcp
8

Phase portrait U
1
A,27 produces phase portrait AAcp

9 (see Figure 16) and after bifurcation we get6

phase portrait U
1
A,42.7

U
1
A,27 U

1
A,42AAcp

9

Figure 16: Unstable phase portrait AAcp
9
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Phase portrait U
1
A,29 produces phase portrait AAcp

10 (see Figure 17) and after bifurcation we get1

phase portrait U
1
A,44.2

U
1
A,29 U

1
A,44AAcp

10

Figure 17: Unstable phase portrait AAcp
10

Phase portrait U
1
A,30 produces phase portrait AAcp

11 (see Figure 18) and after bifurcation we get3

phase portrait U
1
A,39.4

U
1
A,30 U

1
A,39AAcp

11

Figure 18: Unstable phase portrait AAcp
11

Phase portrait U
1
A,35 produces phase portrait AAcp

12 (see Figure 19) and after bifurcation we get5

phase portrait U
1
A,45.6

U
1
A,35 U

1
A,45AAcp

12

Figure 19: Unstable phase portrait AAcp
12

Phase portrait U
1
A,56 produces phase portrait AAcp

13 (see Figure 20) and after bifurcation we get7

phase portrait U
1
A,63.8
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U
1
A,56 U

1
A,63AAcp

13

Figure 20: Unstable phase portrait AAcp
13

Phase portrait U
1
A,60 produces phase portrait AAcp

14 (see Figure 21) and after bifurcation we get1

phase portrait U
1
A,60.2

U
1
A,60U

1
A,60 AAcp

14

Figure 21: Unstable phase portrait AAcp
14

Phase portrait U
1
A,65 produces phase portrait AAcp

15 (see Figure 22) and after bifurcation we get3

phase portrait U
1
A,69.4

U
1
A,65 U

1
A,69AAcp

15

Figure 22: Unstable phase portrait AAcp
15

The remaining cases of codimension one∗ do not produce any phase portrait with a cusp since we5

cannot coalesce the separatrices of the saddle-node with the same stability without affecting other6

points, which produces a higher order codimension phase portrait. These 15 topologically different7

phase portraits with a cusp of codimension two∗ correspond exactly with the phase portraits of8

codimension two in [20]. See Table 8 (Section 4.2) which relates the phase portraits in AAcp

# with9

the phase portraits of [20].10

3.3 Case AAsnsn
11

In the class AAsnsn, the unstable object of codimension two∗ is the set of two finite saddle-nodes12

sn(2)+sn(2).13

24



In order to obtain a phase portrait of codimension two∗ with two finite saddle-nodes starting from1

a phase portrait of codimension one∗ of group A, we keep the existing saddle-node p1 and either2

build a new one p2 by coalescing a saddle and a node, or add a new one.3

On the other hand, from the phase portraits of codimension two∗ with two saddle-nodes, there4

exist two ways of obtaining phase portraits of codimension one∗ also belonging to group A after5

perturbation: making p2 disappear or splitting each saddle-node p1 and p2 into a saddle and a node6

(see Remark 3). So it is not necessary to check the option of adding a saddle-node to a system7

already having one. We just need to seek systems A with sn(2)+s+a and coalesce the two elemental8

singularities.9

Remark 3. We recall that, in quadratic differential systems, the finite singular points are zeroes of10

a polynomial of degree four. Since p1 is already a singular point of multiplicity two, the remaining11

singular points are zeroes of a quadratic polynomial. In other words, they can be two simple singular12

points (a saddle and a node), a double point (saddle-node p2) or two complex conjugate singular13

points.14

Phase portrait U
1
A,2 produces phase portrait AAsnsn

1 (see Figure 23). After bifurcation we get15

phase portraits U
1
A,1, by making the new saddle-node disappear, and U

1
A,4, by splitting the original16

saddle-node into a saddle and a node.17

U
1
A,2

U
1
A,1

U
1
A,4

AAsnsn
1

Figure 23: Unstable system AAsnsn
1

Phase portrait U1
A,3 cannot produce a coalescence with the elemental antisaddle and the elemental18

saddle because the elemental antisaddle is surrounded by the separatrices of the saddle-node, and19

so it cannot reach the saddle. This same situation will happen in other phase portraits, such as in20

U
1
A,28, and many others, and because it is quite simple to detect this phenomena, we will simply skip21

them.22

The study of phase portrait U
1
A,4 is already contained in the study of U1

A,2.23

Phase portrait U
1
A,5 produces phase portrait AAsnsn

2 (see Figure 24). After bifurcation we get24

phase portraits U
1
A,1, by making any saddle-nodes disappear, and U

1
A,5, by splitting the original25

saddle-node into a saddle and a node.26
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Figure 24: Unstable phase portrait AAsnsn
2

Phase portrait U1
A,6 produces phase portrait AAsnsn

3 (see Figure 25). After bifurcation we get phase1

portraits U
1
A,1, by making any of the saddle-nodes disappear, and U

1
A,6, by splitting the original2

saddle-node into a saddle and a node.3

U
1
A,6

U
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U
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Figure 25: Unstable phase portrait AAsnsn
3

Phase portrait U1
A,7 produces phase portrait AAsnsn

4 (see Figure 26). After bifurcation we get phase4

portraits U
1
A,1, by making any of the saddle-nodes disappear, and U

1
A,7, by splitting the original5

saddle-node into a saddle and a node.6
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Figure 26: Unstable phase portrait AAsnsn
4

Phase portrait U1
A,8 produces phase portrait AAsnsn

5 (see Figure 27). After bifurcation we get phase1

portraits U
1
A,1, by making any of the saddle-nodes disappear, and U

1
A,9, by splitting the original2

saddle-node into a saddle and a node.3

U
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U
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Figure 27: Unstable phase portrait AAsnsn
5

All the possibilities concerning U
1
A,9 are already contained in the study of U1

A,8.4

Phase portrait U
1
A,22 produces phase portrait AAsnsn

6 (see Figure 28). After bifurcation we get5

phase portraits U
1
A,21, by making any of the saddle-nodes disappear, and U

1
A,24, by splitting the6

original saddle-node into a saddle and a node.7
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Figure 28: Unstable phase portrait AAsnsn
6

Phase portrait U
1
A,25 produces phase portrait AAsnsn

7 (see Figure 29). After bifurcation we get1

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,19, by making the original2

saddle-node disappear, and U
1
A,26, by splitting the original saddle-node into a saddle and a node.3

U
1
A,25 U

1
A,19

U
1
A,21

U
1
A,26

AAsnsn
7

Figure 29: Unstable phase portrait AAsnsn
7

Even though phase portrait U
1
A,26 is going to produce an equivalent diagram as in Figure 29, we4

will perform it to be sure of that, and we will avoid repeating this same case in the next similar5

steps. Phase portrait U
1
A,26 produces phase portrait AAsnsn

7 (see Figure 30). After bifurcation we6

get phase portraits U1
A,19, by making the new saddle-node disappear, U1

A,25, by splitting the original7

saddle-node into a saddle and a node, and U
1
A,21, by making the original saddle-node disappears.8
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Figure 30: Unstable phase portrait AAsnsn
7

Phase portrait U
1
A,27 produces the impossible phase portrait U

2
I,1 (see Figure 31), because by1

splitting the original saddle-node into a saddle and a node we obtain the impossible phase portrait2

U
1
I,1 of codimension one∗.3

U
1
A,27 U

1
I,1U

2
I,1

Figure 31: Impossible unstable phase portrait U2

I,1

Phase portrait U
1
A,29 produces phase portrait AAsnsn

8 (see Figure 32). After bifurcation we get4

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,30, by splitting the original5

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.6
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Figure 32: Unstable phase portrait AAsnsn
8

Phase portrait U
1
A,31 produces phase portrait AAsnsn

9 (see Figure 33). After bifurcation we get1

phase portraits U
1
A,19, by making any of the saddle-nodes disappear, and U

1
A,33, by splitting the2

original saddle-node into a saddle and a node.3
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Figure 33: Unstable phase portrait AAsnsn
9

Phase portrait U
1
A,34 produces phase portrait AAsnsn

10 (see Figure 34). After bifurcation we get4

phase portraits U
1
A,19, by making the new saddle-node disappear, U

1
A,35, by splitting the original5

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.6
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Figure 34: Unstable phase portrait AAsnsn
10

Phase portrait U
1
A,36 produces phase portrait AAsnsn

11 (see Figure 35). After bifurcation we get1

phase portraits U
1
A,20, by making the new saddle-node disappear, U

1
A,38, by splitting the original2

saddle-node into a saddle and a node, and U
1
A,21, by making the original saddle-node disappear3
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Figure 35: Unstable phase portrait AAsnsn
11

Phase portrait U
1
A,39 produces phase portrait AAsnsn

12 (see Figure 36). After bifurcation we get4

phase portraits U
1
A,21, by making any of the saddle-nodes disappear, and U

1
A,39, by splitting the5

original saddle-node into a saddle and a node.6
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Figure 36: Unstable phase portrait AAsnsn
12

Phase portrait U
1
A,40 produces phase portrait AAsnsn

13 (see Figure 37). After bifurcation we get1

phase portraits U
1
A,19, by making the new saddle-node disappear, U

1
A,41, by splitting the original2

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.3
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Figure 37: Unstable phase portrait AAsnsn
13

Phase portrait U
1
A,42 produces the impossible phase portrait U

2
I,2 (see Figure 38), because by4

splitting the original saddle-node into a saddle and a node we obtain the impossible phase portrait5

U
1
I,2 of codimension one∗.6
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Figure 38: Impossible unstable phase portrait U
2

I,2

Phase portrait U
1
A,44 produces phase portrait AAsnsn

14 (see Figure 39). After bifurcation we get1

phase portraits U
1
A,20, by making any of the saddle-nodes disappear, and U

1
A,44, by splitting the2

original saddle-node into a saddle and a node.3
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Figure 39: Unstable phase portrait AAsnsn
14

Phase portrait U1
A,45 produces phase portrait AAsnsn

15 (see Figure 40). After bifurcation we get4

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,46, by splitting the original5

saddle-node into a saddle and a node, and U
1
A,19, by making the new saddle-node disappear.6
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Figure 40: Unstable phase portrait AAsnsn
15

Phase portrait U
1
A,47 produces phase portrait AAsnsn

16 (see Figure 41). After bifurcation we get1

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,50, by splitting the original2

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.3
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Figure 41: Unstable phase portrait AAsnsn
16

Phase portrait U
1
A,48 produces phase portrait AAsnsn

17 (see Figure 42). After bifurcation we get4

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,49, by splitting the original5

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.6
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Figure 42: Unstable phase portrait AAsnsn
17

Phase portrait U
1
A,51 produces phase portrait AAsnsn

18 (see Figure 43). After bifurcation we get1

phase portraits U
1
A,19, by making the new saddle-node disappear, U

1
A,53, by splitting the original2

saddle-node into a saddle and a node, and U
1
A,21, by making the new saddle-node disappear.3
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Figure 43: Unstable phase portrait AAsnsn
18

Phase portrait U
1
A,52 produces the impossible phase portrait U

2
I,3 (see Figure 44), because by4

splitting the original saddle-node into a saddle and a node we obtain the impossible phase portrait5

U
1
I,3 of codimension one∗.6
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Figure 44: Impossible unstable phase portrait U2

I,3

Phase portrait U
1
A,54 produces phase portrait AAsnsn

19 (see Figure 45). After bifurcation we get1

phase portraits U
1
A,19, by making any of the saddle-nodes disappear, and U

1
A,54, by splitting the2

original saddle-node into a saddle and a node.3
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Figure 45: Unstable phase portrait AAsnsn
19

Phase portrait U
1
A,55 produces phase portrait AAsnsn

20 (see Figure 46). After bifurcation we get4

phase portraits U
1
A,19, by making any of the saddle-nodes disappear, and U

1
A,55, by splitting the5

original saddle-node into a saddle and a node.6

U
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Figure 46: Unstable phase portrait AAsnsn
20
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The remaining cases of codimension one∗ do not produce any phase portrait with two saddle-nodes1

since either (1) they have enough finite singular points to produce another saddle-node, or (2) the2

saddle and the node are not directly linked. See Table 6 for the corresponding cases.3

Table 6: Codimension one∗ phase portraits that do not produce any phase portrait with two saddle-

nodes according to their respective reason. In the first column we present the reasons and in the

second one we list the corresponding cases

(1) U
1
A,11,U

1
A,12,U

1
A,13,U1

A,14,U
1
A,15,U

1
A,16,U

1
A,17,U

1
A,18,U

1
A,56,U

1
A,57,U

1
A,58,U

1
A,59,U

1
A,60,U

1
A,61,U1

A,62

U
1
A,63,U

1
A,64,U

1
A,65,U1

A,66,U
1
A,67,U

1
A,68,U

1
A,69,U

1
A,70

(2) U
1
A,3,U

1
A,10,U

1
A,23,U

1
A,28,U

1
A,32,U

1
A,37,U1

A,43

4 Proof of Theorem 3: the realization of the phase portraits4

4.1 Introduction5

In the previous section we have produced all the topologically possible phase portraits for structurally6

unstable quadratic systems of codimension two∗ belonging to the group
∑2

2(AA). And from them,7

we have already discarded some which are not realizable due to their unfoldings of codimensions one8

and zero are impossible. The data is summarized in Table 7.9

Table 7: Summary of Section 3

Group # Top. Possible # Not Realizable Total

AAs 5 0 5

AAn 7 0 7

AAcp 15 0 15

AAsnsn 23 3 20

Total 50 3 47

In this section we prove that one case from AAsnsn is not realizable and we give specific examples10

for the 46 different topological classes of structurally unstable quadratic systems of codimension11

two∗.12

In [3] the authors point out that all 44 structurally stable phase portraits could be obtained without13

limit cycle and they prove this one by one. On the contrary, due to the large number of cases, in [5]14

the authors did not follow the same procedure for the 204 structurally unstable phase portraits of15

codimension one∗. Since the present paper is directly derived from this second study, we have found16

examples with no signals of limit cycles, but we have not proved the absence of infinitesimal ones.17

In the attempt of seeking for concrete examples of each of the unstable systems of codimension18

two∗ previously found, we have relied on many papers where families of quadratic systems had been19

studied, so that either from themselves, or by a perturbation of them, the wanted phase portraits20

appeared. More concretely, the useful papers have been:21

37



(1) [9] where the set of all real quadratic polynomial differential systems with a finite semi-elemental1

triple saddle was topologically classified, and by using the phase portraits of generic regions2

we realize the cases of group AAs.3

(2) [10] where the set of all real quadratic polynomial differential systems with a finite semi-4

elemental triple node was topologically classified, and by using the phase portraits of generic5

regions we realize the cases of group AAn.6

(3) [20] where the author classified all quadratic systems with a cusp, and by using directly some7

phase portraits of Jager’s classification we realize the cases of group AAcp.8

(4) [11] where the set of all real quadratic polynomial differential systems with a finite saddle-9

node and an infinite saddle-node
(0
2

)
SN were topologically classified, and by using the theory10

rotated vector fields on systems from surface S2 (where another finite saddle-node exists) we11

may either break the infinite saddle-node into elemental singular points, or making it disappear,12

we produce the cases of group AAsnsn.13

Using these papers we could find all possible examples from the four groups we study here. For14

the cases AAs and AAn, because of Lemma 2, we do not show the realization of such phase portraits15

here. In the next two sections we show the realization of phase portraits of cases AAcp and AAsnsn.16

4.2 Realization of cases AA
cp

17

Now we give examples of all realizable structurally unstable phase portraits of codimension two∗ for18

quadratic systems having a cusp. Although there exist different papers having examples realizing19

these phase portraits, we chose the paper [20] from which we can obtain all of them directly.20

Consider systems21

ẋ = y + λ1x
2 + λ2xy, ẏ = x2 + λ3xy + λ4y

2, (3)

with λ4
3 − 4λ4 < 0, and22

ẋ = y + λ1x
2 + λ2xy, ẏ = x2 + 2λ3xy + (λ2

3 − 1)y2, (4)

with λ1 > 0.23

These normal forms (3) and (4) are studied in [20] and they represent quadratic systems possessing24

a cusp.25

In [20] there are many phase portraits which produce a phase portrait of family AAcp. In Table 826

we simply present one representative from generic regions of the bifurcation diagram of (3) and (4)27

corresponding to the phase portrait of codimension two∗.28
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Table 8: Correspondence between codimension two∗ phase portraits of group AAc and the phase

portraits in [20]. In the first column we present the definitive notation of the realizable phase por-

traits, in the second column we present the codimension two∗ phase portraits of group AAc in the

present paper, in the third column we show the corresponding phase portraits in [20], in the fourth

column we specify the corresponding normal form and in the other columns we present the values

of the parameters of (3) and (4) which realizes such phase portrait

Cod 2∗ [20] Normal form λ1 λ2 λ3 λ4

U
2
AA,1 AAcp

1 a, Fig. 12 (3) 0 1 0 2

U
2
AA,2 AAcp

2 1, Fig. 18 (4) 0 −2 −2 -

U
2
AA,3 AAcp

3 9abc, Fig. 18 (4) 3 −11 −2 -

U
2
AA,4 AAcp

4 3abc, Fig. 18 (4) 1 −1 0 -

U
2
AA,5 AAcp

5 10, Fig. 22 (4) 1 2 0 -

U
2
AA,6 AAcp

6 c λ1 > 0, Fig. 12 (3) 1 2 1 1

U
2
AA,7 AAcp

7 31, Fig. 22 (4) 9 −3 2 -

U
2
AA,8 AAcp

8 12a, Fig. 22 (4) 2 8 3/2 -

U
2
AA,9 AAcp

9 22, Fig. 22 (4) 4 −3 0 -

U
2
AA,10 AAcp

10 12c, Fig. 22 (4) 3 14 73/20 -

U
2
AA,11 AAcp

11 14, Fig. 22 (4) 3 14 366661/100000 -

U
2
AA,12 AAcp

12 8, Fig. 22 (4) 3 14 −2 -

U
2
AA,13 AAcp

13 24a, Fig. 22 (4) 14 −10 1/2 -

U
2
AA,14 AAcp

14 29a, Fig. 22 (4) 1 −1 1/10 -

U
2
AA,15 AAcp

15 12c, Fig. 22 (4) 14 −10 4/5 -

4.3 Realization of cases AA
snsn

1

In this section we provide examples of the realizable structurally unstable phase portraits of codi-2

mension two∗ for quadratic systems having two finite saddle-nodes. In opposite to the previous cases,3

as far as we know, this type of family of quadratic systems has not been topologically classified, so4

that we do not count with a paper which provides the desired phase portraits of codimension two∗5

in a direct way.6

In [11] the authors studied the geometry of the quadratic systems possessing a finite saddle-node7

sn(2) and an infinite saddle-node
(
0
2

)
SN . In the bifurcation diagram described in [11], the surface8

of bifurcation S2 consists on the systems with two finite saddle-nodes and the infinite saddle-node9 (0
2

)
SN .10

Moreover, we observe that if we apply some perturbation on systems belonging to this surface S211

that splits the infinite saddle-node into a saddle and a node (both infinite) and keeps untouched12

both finite saddle-nodes, we obtain all but one of the realizable cases of group AAsnsn. Thus, the13

way of providing these examples is considering a rotated family of vector fields.14

First, we prove that 19 cases are realizable using perturbations of phase portraits from [11]. We15
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consider system1

ẋ = gx2 + 2hxy + (n− g − 2h)y2,

ẏ = y + lx2 + (2g + 2h− 2l − n)xy + (2h + l + 2(n− g − 2h))y2,
(5)

with g, h, l and n real constants, which is the normal form in [11] of quadratic systems possessing2

a finite saddle-node sn(2) and an infinite saddle-node
(
0
2

)
SN located at the bisector of the first and3

third quadrants.4

As mentioned above, systems of the form (5) belonging to the surface5

S2 : −12g2(g2 + 2gh + h2 − gn) = 0

possess two finite saddle-nodes and the infinite saddle-node
(0
2

)
SN .6

We consider the rotated family of vector fields7

ẋ =gx2 + 2hxy + (n− g − 2h)y2,

ẏ =y + lx2 + (2g + 2h− 2l − n)xy + (2h + l + 2(n− g − 2h))y2

+ α(gx2 + 2hxy + (n− g − 2h)y2),

(6)

with g, h, l and n real constants and α ∈ R is the parameter of rotation.8

In Table 9 we present the coefficients of system (6) which has the phase portraits of group AAsnsn,9

derived from the rotation of systems (5) on surface S2 from their bifurcation diagram.10

Now, we proceed to prove the impossibility of phase portrait AAsnsn
17 .11

The first fact that we need to verify is that AAsnsn
17 cannot have as a neighbor any other phase12

portrait with two finite saddle-nodes and three infinite singularities after a separatrix connection.13

Indeed, Figure 47 shows phase portrait AAsnsn
17 with all of its separatrices labeled.14

α
β

γ

δ

ǫ

θ
κ

λ

Figure 47: Phase portrait AAsnsn
17

with all of its separatrices labeled

Performing the connection of the separatrices two by two and breaking it in the other possible15

way, we obtain either AAsnsn
17 itself or an impossible phase portrait already found in the literature.16

Figure 48 shows all the possible separatrix connections from AAsnsn
17 : α− β, β − δ, γ − ǫ, and ǫ− θ.17

The pairs of separatrices δ− θ and ǫ− κ (loop without focus implies elliptic sector) are not possible18

because the resulting phase portrait would be of codimension higher than three.19

Second, we prove that AAsnsn
17 cannot unfold in a phase portrait with two finite saddle-nodes20

and three infinite singularities after a coalescence of singular points. In fact, we suppose that phase21
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Table 9: Coefficients of system (6) whose phase portrait is from group AAsnsn, derived from the

rotation of systems (5) on surface S2 from their bifurcation diagram. In the first column we present the

definitive notation of the realizable phase portraits, in the second column we present the codimension

two∗ phase portraits of group AAsnsn in the present paper, in the third column we show the derived

phase portrait in [11] before rotation and in the other columns, the coefficients of system (6)

Cod 2∗ [11] g h l n α

U
2
AA,16 AAsnsn

1 2S1 1 −1−
√

10 18 10 −10−4

U
2
AA,17 AAsnsn

2 2S5 1 −1−
√

10 9/10 10 −10−2

U
2
AA,18 AAsnsn

3 2S3 1 −1−
√

10 2 10 −10−3

U
2
AA,19 AAsnsn

4 2S11 1 3 11/5 16 −10−3

U
2
AA,20 AAsnsn

5 2S10 1 3 14/5 16 −10−3

U
2
AA,21 AAsnsn

6 2S1 1 −1−
√

10 18 10 −10−5

U
2
AA,22 AAsnsn

7 2S4 1 −1−
√

10 11/10 10 10−3

U
2
AA,23 AAsnsn

8 2S31 1 −3/5 73/100 4/25 −10−4

U
2
AA,24 AAsnsn

9 2S6 1 −1−
√

10 3/5 10 10−3

U
2
AA,25 AAsnsn

10 2S5 1 −1−
√

10 9/10 10 10−3

U
2
AA,26 AAsnsn

11 2S10 1 3 14/5 16 10−3

U
2
AA,27 AAsnsn

12 2S3 1 −1−
√

10 2 10 10−3

U
2
AA,28 AAsnsn

13 2S23 1 −1/10 4999997/5000000 81/100 −10−8

U
2
AA,29 AAsnsn

14 2S30 1 −11/20 71/100 81/400 −10−4

U
2
AA,30 AAsnsn

15 2S19 1 23/25 −50 2304/625 10−4

U
2
AA,31 AAsnsn

16 2S11 1 3 11/5 16 10−3

U
2
AA,33 AAsnsn

18 2S18 1 −1 +
√

6 12/5 6 −10−5

U
2
AA,34 AAsnsn

19 2S24 1 −1/10 7/10 81/100 −10−3

U
2
AA,35 AAsnsn

20 2S21 1 23/25 1183/1250 2304/625 −10−5

portrait AAsnsn
17 is realizable. We recall the normal form (6) from [8],1

ẋ = cx + cuy − cx2 + 2cvxy + ky2,

ẏ = ex + euy − ex2 + 2evxy + ny2,
(7)

which includes all families of quadratic differential systems with two finite double singular points. In2

this sense, phase portrait AAsnsn
17 must be realized by some representative inside this normal form.3

It is easy to check that the finite double singular points of (7) are located at (0, 0) and (1, 0), and in4

order to place an infinite singular point at the point [0 : 1 : 0], we can set k = 0 and e = 1.5

Normal form (7) contains also other phase portraits which are in the border of the region Σ2
2(AA).6

For example, the double points may be cusp points, but this normal form does not contain all7

possible borders (for example, multiplicity four points or finite points going to infinity since the8

finite singularities are fixed).9

Now, with the purpose to set the singularity at [0 : 1 : 0] as the infinite saddle, we consider the10
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α− β

β − δ

γ − ǫ

ǫ− θ

AAsnsn
17

AAsnsn
17

AAsnsn
17

AAsnsn
17AAsnsn

17

U
1
I,3

I10,17

I10,12

Figure 48: Possible separatrix connections for phase portrait AAsnsn
17 . Each line of the picture is due to a

possible type of connection: we begin with phase portrait AAsnsn
17

, perform the separatrix connection, obtaining

a codimension-three phase portrait, and then we split the connection into two separatrices obtaining either

AAsnsn
17 itself (in the type α − β) or an impossible phase portrait (in the remaining types). Phase portraits

I10,12 and I10,17 are impossible to be realized due to the results in [3], and U1

I,3 is impossible due to [5]

vector field in the local chart U2,1

ẇ = −(n− 2cv)w − (c + 2v)w2 + w3 + (c− w)(u + w)z,

ż = −z(n− w2 + uz + w(2v + z)),
(8)

whose Jacobian matrix at (0, 0) is2

JU2
(0, 0) =

(
−n + 2cv cu

0 −n

)
.

So, to have a saddle, we need n 6= 0 and n(n− 2cv) < 0. Then, we may assume n = 1 or n = −1.3

42



Moreover, to obtain AAsnsn
17 , we need a positive and a negative infinite singularity on chart U2; i.e.,1

since the infinite saddle is placed at [0 : 1 : 0], the other two infinite singular points must be located2

one in each side of this saddle. Assume the contrary. We place both remaining infinite antisaddles on3

the same side of the saddle, according to Figure 49. The separatrix α of the infinite saddle S1 must4

come from the infinite node N1, and to obtain AAsnsn
17 , the separatrix β of the saddle S2 must meet5

the infinite node N2 and it should cross the straight line passing through the finite saddle-nodes in6

the segment on the right side of the finite point at (1, 0), but it is impossible because of the direction7

of the flow on this segment.8

S1

N1

S2

N2

α

β

Figure 49: Wrong position of the infinite singular points in order to obtain phase portrait AAsnsn
17

Searching for the singular points of (8), we have the equation9

w(w2 − (c + 2v)w − (n− 2cv)) = 0,

and to have one infinite node placed one in each side of the infinite saddle, we must have n−2cv > 0,10

and because n(n − 2cv) < 0, then we have n < 0. So, we set n = −1, and we obtain the following11

system:12

ẋ = cx + cuy − cx2 + 2cvxy,

ẏ = x + uy − x2 + 2vxy − y2,
(9)

which possesses a symmetry in the parameters of the type (c, u, v) 7→ (−c,−u,−v). Then, we can13

restrict the analysis to u < 0.14

Recalling normal form (7), the bifurcations related to singularities that can be on the border of15

this family (and hence, of phase portrait AAsnsn
17 ) are the coalescence of two infinite singularities16

(η = 0 and M̃ 6= 0), a line of singularities (µ0 = µ1 = µ2 = µ3 = µ4 = 0), and a saddle-node17

becoming a cusp point (T4 = 0). Then, for system (9), we compute:18

η = (−2 + c− 2v)(2 + c− 2v)(1 + 2cv)2,

M̃ = −8(−3 + c2 − 2cv + 4v2)x2 + 8(c + 2v)(1 + 2cv)xy − 8(1 + 2cv)2y2,

µ0 = c2, µ1 = 2c2y, µ2 = c2y2, µ3 = µ4 = 0,

T4 = c2(c + u)2(c− u− 2v)2.

Because n− 2cv > 0, we have −1− 2cv = −(1 + 2cv) 6= 0 and, then, M̃ is not zero.19
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So, the bifurcations related to singularities that can be on the border of phase portrait AAsnsn
17 are1

represented by the following surfaces:2

(−2 + c− 2v)(2 − c− v)(1 + 2cv) = 0, c = 0, c + u = 0, c− u− 2v = 0.

These bifurcations form several different regions with η > 0 and 1 + 2cv < 0, as illustrated in3

Figure 50.4

cc

ccc

vv

vvv

V1V1

V1V1V1

V2V2

V2
V2V2

V3V3

V3V3V3

V4

u = −1/2 u = −1 u = −3/2

u = −2 u = −3

Figure 50: Diagram bifurcation for normal form (7) concerning the bifurcations of singularities.

The bifurcation diagram illustrated in Figure 50 consists in considering planes in the coordinates5

(c, v) by fixing u = u0, with u0 < 0. In each slice u = u0 of the bifurcation diagram, surface η = 06

is represented in continuous lines (except for the axes), consisting in a pair of parallel straight lines7

plus a hyperbola; surface T4 = 0 is represented in dashed lines, consisting in a vertical straight line,8

plus the v-axis, plus a straight line with the same slope as the continuous straight lines; and surface9

µ0 = 0 is a vertical straight line coinciding with the v-axis.10

Choosing negative values for u, we see that u = −1 and u = −2 are critical values because in the11

corresponding slices there exist some topological change in the bifurcation diagram. For u = −1, the12
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vertical dashed straight line passes through the intersection of the curves represented in continuous1

trace (one straight line and a branch of the hyperbola). Then, for u = −2, the inclined dashed2

straight line coalesces with one of the straight lines drawn in continuous trace. The other values of3

u that we have chosen indicate any slice above (up to u = 0), between and below the critical values4

of u, respectively. This technique for the study of three dimensional quadratic systems has already5

been used in much more complicated families as can be seen in [6, 11].6

Because of the conditions η > 0 and 1 + 2cv < 0, we are only interested in the indicated regions7

in Figure 50 as V1, V2, V3 and V4. We will take representatives, one in each region. Phase portrait8

AAsnsn
17 should be one of them, but if none of them is AAsnsn

17 , then it does not exist, because we9

cannot move from other phase portrait with two saddle-nodes to AAsnsn
17 by means of a separatrix10

connection as we have seen before. Indeed, for normal form (9), we consider:11

(V1) (c, u, v) = (−2,−3, 2), (V3) (c, u, v) = (4,−3,−1),

(V2) (c, u, v) = (2,−3,−2), (V4) (c, u, v) = (−4/5,−3, 4/5).
(10)

In all of the cases we have η > 0 and the corresponding phase portraits are topologically equivalent12

to AAsnsn
20 , AAsnsn

6 , AAsnsn
18 , and AAsnsn

6 , respectively (see Figure 51).

V1 V2 V3 V4

Figure 51: Phase portraits corresponding to regions V1, V2, V3, and V4 of the bifurcation diagram in Figure 50

(see the values of the parameters in (10)). These phase portraits correspond to phase portraits AAsnsn
20

, AAsnsn
6

,

AAsnsn
18 , and AAsnsn

6 , respectively

13

We note that it is possible that, for different values of c, v, and u, we get other phase portraits14

different from the ones obtained in Figure 51. There exist no restrictions to obtain other phase15

portraits if the parameters change, but for AAsnsn
17 we know that it cannot have a system with a16

connection of separatrices as its borders. So, we have proved that AAsnsn
17 cannot be realizable.17
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