Filtros : "CONTROLE ÓTIMO" "LAURAIN, ANTOINE" Removido: "Menezes, Tiago da Costa" Limpar

Filtros



Refine with date range


  • Source: Mathematics of Operations Research. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e GARDENGHI, John Lenon Cardoso e LAURAIN, Antoine. Bounds on the optimal radius when covering a set with minimum radius identical disks. Mathematics of Operations Research, v. 49, n. 3, p. 1855-1889, 2024Tradução . . Disponível em: https://doi.org/10.1287/moor.2022.0104. Acesso em: 05 nov. 2024.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., & Laurain, A. (2024). Bounds on the optimal radius when covering a set with minimum radius identical disks. Mathematics of Operations Research, 49( 3), 1855-1889. doi:10.1287/moor.2022.0104
    • NLM

      Birgin EJG, Gardenghi JLC, Laurain A. Bounds on the optimal radius when covering a set with minimum radius identical disks [Internet]. Mathematics of Operations Research. 2024 ; 49( 3): 1855-1889.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1287/moor.2022.0104
    • Vancouver

      Birgin EJG, Gardenghi JLC, Laurain A. Bounds on the optimal radius when covering a set with minimum radius identical disks [Internet]. Mathematics of Operations Research. 2024 ; 49( 3): 1855-1889.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1287/moor.2022.0104
  • Source: The Journal of Geometric Analysis. Unidade: IME

    Subjects: CONTROLE ÓTIMO, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. Optimization of the first Dirichlet laplacian eigenvalue with respect to a union of balls. The Journal of Geometric Analysis, v. 33, n. artigo 184, p. 1-28, 2023Tradução . . Disponível em: https://doi.org/10.1007/s12220-023-01241-w. Acesso em: 05 nov. 2024.
    • APA

      Birgin, E. J. G., Fernandez, L. dos S., Haeser, G., & Laurain, A. (2023). Optimization of the first Dirichlet laplacian eigenvalue with respect to a union of balls. The Journal of Geometric Analysis, 33( artigo 184), 1-28. doi:10.1007/s12220-023-01241-w
    • NLM

      Birgin EJG, Fernandez L dos S, Haeser G, Laurain A. Optimization of the first Dirichlet laplacian eigenvalue with respect to a union of balls [Internet]. The Journal of Geometric Analysis. 2023 ; 33( artigo 184): 1-28.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s12220-023-01241-w
    • Vancouver

      Birgin EJG, Fernandez L dos S, Haeser G, Laurain A. Optimization of the first Dirichlet laplacian eigenvalue with respect to a union of balls [Internet]. The Journal of Geometric Analysis. 2023 ; 33( artigo 184): 1-28.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s12220-023-01241-w
  • Source: Structural and Multidisciplinary Optimization. Unidade: IME

    Subjects: CONTROLE ÓTIMO, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAURAIN, Antoine. A level set-based structural optimization code using FEniCS. Structural and Multidisciplinary Optimization, v. 58, n. 3, p. 1311-1334, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-018-1950-2. Acesso em: 05 nov. 2024.
    • APA

      Laurain, A. (2018). A level set-based structural optimization code using FEniCS. Structural and Multidisciplinary Optimization, 58( 3), 1311-1334. doi:10.1007/s00158-018-1950-2
    • NLM

      Laurain A. A level set-based structural optimization code using FEniCS [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58( 3): 1311-1334.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00158-018-1950-2
    • Vancouver

      Laurain A. A level set-based structural optimization code using FEniCS [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58( 3): 1311-1334.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00158-018-1950-2
  • Source: Structural and Multidisciplinary Optimization. Unidade: IME

    Subjects: CONTROLE ÓTIMO, CÁLCULO DE VARIAÇÕES, ANÁLISE ASSINTÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAMBRINE, Marc e LAURAIN, Antoine. A first order approach for worst-case shape optimization of the compliance for a mixture in the low contrast regime. Structural and Multidisciplinary Optimization, v. 54, n. 2, p. 215-231, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00158-015-1384-z. Acesso em: 05 nov. 2024.
    • APA

      Dambrine, M., & Laurain, A. (2016). A first order approach for worst-case shape optimization of the compliance for a mixture in the low contrast regime. Structural and Multidisciplinary Optimization, 54( 2), 215-231. doi:10.1007/s00158-015-1384-z
    • NLM

      Dambrine M, Laurain A. A first order approach for worst-case shape optimization of the compliance for a mixture in the low contrast regime [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 215-231.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00158-015-1384-z
    • Vancouver

      Dambrine M, Laurain A. A first order approach for worst-case shape optimization of the compliance for a mixture in the low contrast regime [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 215-231.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00158-015-1384-z
  • Source: Journal of Inverse and Ill-posed Problems. Unidade: IME

    Subjects: PROBLEMAS INVERSOS, CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAURAIN, Antoine e MEFTAHI, Houcine. Shape and parameter reconstruction for the Robin transmission inverse problem. Journal of Inverse and Ill-posed Problems, v. 24, n. 6, p. 1-20, 2016Tradução . . Disponível em: https://doi.org/10.1515/jiip-2015-0008. Acesso em: 05 nov. 2024.
    • APA

      Laurain, A., & Meftahi, H. (2016). Shape and parameter reconstruction for the Robin transmission inverse problem. Journal of Inverse and Ill-posed Problems, 24( 6), 1-20. doi:10.1515/jiip-2015-0008
    • NLM

      Laurain A, Meftahi H. Shape and parameter reconstruction for the Robin transmission inverse problem [Internet]. Journal of Inverse and Ill-posed Problems. 2016 ; 24( 6): 1-20.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1515/jiip-2015-0008
    • Vancouver

      Laurain A, Meftahi H. Shape and parameter reconstruction for the Robin transmission inverse problem [Internet]. Journal of Inverse and Ill-posed Problems. 2016 ; 24( 6): 1-20.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1515/jiip-2015-0008
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, MÉTODOS VARIACIONAIS, OPERADORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAMBOLEY, Jimmy et al. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial Differential Equations, v. 55, n. 6, p. 1-37, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00526-016-1084-6. Acesso em: 05 nov. 2024.
    • APA

      Lamboley, J., Laurain, A., Nadin, G., & Privat, Y. (2016). Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial Differential Equations, 55( 6), 1-37. doi:10.1007/s00526-016-1084-6
    • NLM

      Lamboley J, Laurain A, Nadin G, Privat Y. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( 6): 1-37.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00526-016-1084-6
    • Vancouver

      Lamboley J, Laurain A, Nadin G, Privat Y. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( 6): 1-37.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00526-016-1084-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024