Bounds on the optimal radius when covering a set with minimum radius identical disks (2024)
- Authors:
- USP affiliated authors: BIRGIN, ERNESTO JULIAN GOLDBERG - IME ; LAURAIN, ANTOINE - IME
- Unidade: IME
- DOI: 10.1287/moor.2022.0104
- Subjects: CÁLCULO DE VARIAÇÕES; CONTROLE ÓTIMO
- Keywords: Covering with balls; asymptotic bounds; shape optimization; numerical optimization
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2024
- Source:
- Título: Mathematics of Operations Research
- ISSN: 0364-765X
- Volume/Número/Paginação/Ano: v. 49, n. 3, p. 1855-1889, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e GARDENGHI, John Lenon Cardoso e LAURAIN, Antoine. Bounds on the optimal radius when covering a set with minimum radius identical disks. Mathematics of Operations Research, v. 49, n. 3, p. 1855-1889, 2024Tradução . . Disponível em: https://doi.org/10.1287/moor.2022.0104. Acesso em: 18 fev. 2026. -
APA
Birgin, E. J. G., Gardenghi, J. L. C., & Laurain, A. (2024). Bounds on the optimal radius when covering a set with minimum radius identical disks. Mathematics of Operations Research, 49( 3), 1855-1889. doi:10.1287/moor.2022.0104 -
NLM
Birgin EJG, Gardenghi JLC, Laurain A. Bounds on the optimal radius when covering a set with minimum radius identical disks [Internet]. Mathematics of Operations Research. 2024 ; 49( 3): 1855-1889.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1287/moor.2022.0104 -
Vancouver
Birgin EJG, Gardenghi JLC, Laurain A. Bounds on the optimal radius when covering a set with minimum radius identical disks [Internet]. Mathematics of Operations Research. 2024 ; 49( 3): 1855-1889.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1287/moor.2022.0104 - Sensitivity analysis and tailored design of minimization diagrams
- A Shape-Newton approach to the problem of covering with identical balls
- Shape and parameter reconstruction for the Robin transmission inverse problem
- Distributed shape derivative via averaged adjoint method and applications
- Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model
- Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions
- Shape optimization of an electric motor subject to nonlinear magnetostatics
- A new reconstruction method for the inverse source problem from partial boundary measurements
- Droplet footprint control
- Level set-based shape optimization approach for sharp-interface reconstructions in time-domain full waveform inversion
Informações sobre o DOI: 10.1287/moor.2022.0104 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
