Shape and parameter reconstruction for the Robin transmission inverse problem (2016)
- Authors:
- Autor USP: LAURAIN, ANTOINE - IME
- Unidade: IME
- DOI: 10.1515/jiip-2015-0008
- Subjects: PROBLEMAS INVERSOS; CÁLCULO DE VARIAÇÕES; CONTROLE ÓTIMO
- Keywords: Inverse problem; shape optimization; parameter identification; shape identification; shape derivative
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Inverse and Ill-posed Problems
- ISSN: 0928-0219
- Volume/Número/Paginação/Ano: v. 24, n. 6, p. 1-20, 2016
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
LAURAIN, Antoine e MEFTAHI, Houcine. Shape and parameter reconstruction for the Robin transmission inverse problem. Journal of Inverse and Ill-posed Problems, v. 24, n. 6, p. 1-20, 2016Tradução . . Disponível em: https://doi.org/10.1515/jiip-2015-0008. Acesso em: 17 fev. 2026. -
APA
Laurain, A., & Meftahi, H. (2016). Shape and parameter reconstruction for the Robin transmission inverse problem. Journal of Inverse and Ill-posed Problems, 24( 6), 1-20. doi:10.1515/jiip-2015-0008 -
NLM
Laurain A, Meftahi H. Shape and parameter reconstruction for the Robin transmission inverse problem [Internet]. Journal of Inverse and Ill-posed Problems. 2016 ; 24( 6): 1-20.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1515/jiip-2015-0008 -
Vancouver
Laurain A, Meftahi H. Shape and parameter reconstruction for the Robin transmission inverse problem [Internet]. Journal of Inverse and Ill-posed Problems. 2016 ; 24( 6): 1-20.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1515/jiip-2015-0008 - Distributed shape derivative via averaged adjoint method and applications
- Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model
- Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions
- Shape optimization of an electric motor subject to nonlinear magnetostatics
- A new reconstruction method for the inverse source problem from partial boundary measurements
- Droplet footprint control
- Level set-based shape optimization approach for sharp-interface reconstructions in time-domain full waveform inversion
- Shape optimization for superconductors governed by H(curl)-elliptic variational inequalities
- Analysis and application of a lower envelope method for sharp-interface multiphase problems
- Analyzing smooth and singular domain perturbations in level set methods
Informações sobre o DOI: 10.1515/jiip-2015-0008 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
