Filtros : "ATRATORES" "FRACTAIS" Removidos: "SME" "SEMIGRUPOS NÃO LINEARES" "2016" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: ATRATORES, FRACTAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gabriela Cristina da. Uma abordagem topológica e dinâmica à geometria fractal. 2023. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/. Acesso em: 18 nov. 2024.
    • APA

      Silva, G. C. da. (2023). Uma abordagem topológica e dinâmica à geometria fractal (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
    • NLM

      Silva GC da. Uma abordagem topológica e dinâmica à geometria fractal [Internet]. 2023 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
    • Vancouver

      Silva GC da. Uma abordagem topológica e dinâmica à geometria fractal [Internet]. 2023 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, FRACTAIS, ESPAÇOS DE BANACH, EQUAÇÕES DE NAVIER-STOKES, OPERADORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUNHA, Arthur Cavalcante. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/. Acesso em: 18 nov. 2024.
    • APA

      Cunha, A. C. (2021). Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • NLM

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • Vancouver

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
  • Source: Nonlinear Analysis : Real World Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, FRACTAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANG, Xin-Guang et al. Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity. Nonlinear Analysis : Real World Applications, v. 48, p. 337-361, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2019.01.013. Acesso em: 18 nov. 2024.
    • APA

      Yang, X. -G., Feng, B., Wang, S., Lu, Y., & Ma, T. F. (2019). Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity. Nonlinear Analysis : Real World Applications, 48, 337-361. doi:10.1016/j.nonrwa.2019.01.013
    • NLM

      Yang X-G, Feng B, Wang S, Lu Y, Ma TF. Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity [Internet]. Nonlinear Analysis : Real World Applications. 2019 ; 48 337-361.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.nonrwa.2019.01.013
    • Vancouver

      Yang X-G, Feng B, Wang S, Lu Y, Ma TF. Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity [Internet]. Nonlinear Analysis : Real World Applications. 2019 ; 48 337-361.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.nonrwa.2019.01.013
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, FRACTAIS, ATRATORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque. Structure of attractors and estimates of their fractal dimension. 2013. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2013. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042013-104751/. Acesso em: 18 nov. 2024.
    • APA

      Bortolan, M. C. (2013). Structure of attractors and estimates of their fractal dimension (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042013-104751/
    • NLM

      Bortolan MC. Structure of attractors and estimates of their fractal dimension [Internet]. 2013 ;[citado 2024 nov. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042013-104751/
    • Vancouver

      Bortolan MC. Structure of attractors and estimates of their fractal dimension [Internet]. 2013 ;[citado 2024 nov. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042013-104751/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024