Filtros : "ANÉIS E ÁLGEBRAS ASSOCIATIVOS" "FUTORNY, VYACHESLAV" Limpar

Filtros



Refine with date range


  • Source: Letters in Mathematical Physics. Unidade: IME

    Subjects: C* ÁLGEBRAS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCK, Wolfgang e FUTORNY, Vyacheslav e NEKLYUDOV, Mikhail. A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra. Letters in Mathematical Physics, v. 112, n. artigo 24, p. 1-11, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11005-022-01507-4. Acesso em: 02 nov. 2024.
    • APA

      Bock, W., Futorny, V., & Neklyudov, M. (2022). A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra. Letters in Mathematical Physics, 112( artigo 24), 1-11. doi:10.1007/s11005-022-01507-4
    • NLM

      Bock W, Futorny V, Neklyudov M. A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra [Internet]. Letters in Mathematical Physics. 2022 ; 112( artigo 24): 1-11.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11005-022-01507-4
    • Vancouver

      Bock W, Futorny V, Neklyudov M. A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra [Internet]. Letters in Mathematical Physics. 2022 ; 112( artigo 24): 1-11.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11005-022-01507-4
  • Source: Mathematics. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAZEMI, Abdullah et al. Three representation types for systems of forms and linear maps. Mathematics, v. 9, n. art. 455, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.3390/math9050455. Acesso em: 02 nov. 2024.
    • APA

      Alazemi, A., Anđelić, M., da Fonseca, C. M., Futorny, V., & Sergeichuk, V. V. (2021). Three representation types for systems of forms and linear maps. Mathematics, 9( art. 455), 1-12. doi:10.3390/math9050455
    • NLM

      Alazemi A, Anđelić M, da Fonseca CM, Futorny V, Sergeichuk VV. Three representation types for systems of forms and linear maps [Internet]. Mathematics. 2021 ; 9( art. 455): 1-12.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/math9050455
    • Vancouver

      Alazemi A, Anđelić M, da Fonseca CM, Futorny V, Sergeichuk VV. Three representation types for systems of forms and linear maps [Internet]. Mathematics. 2021 ; 9( art. 455): 1-12.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/math9050455
  • Source: Asian Journal of Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr e BEKKERT, Viktor e FUTORNY, Vyacheslav. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In. Asian Journal of Mathematics, v. 25, n. 5, p. 727-756, 2021Tradução . . Disponível em: https://doi.org/10.4310/AJM.2021.v25.n5.a6. Acesso em: 02 nov. 2024.
    • APA

      Bavula, V., Bekkert, V., & Futorny, V. (2021). Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In. Asian Journal of Mathematics, 25( 5), 727-756. doi:10.4310/AJM.2021.v25.n5.a6
    • NLM

      Bavula V, Bekkert V, Futorny V. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In [Internet]. Asian Journal of Mathematics. 2021 ; 25( 5): 727-756.[citado 2024 nov. 02 ] Available from: https://doi.org/10.4310/AJM.2021.v25.n5.a6
    • Vancouver

      Bavula V, Bekkert V, Futorny V. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In [Internet]. Asian Journal of Mathematics. 2021 ; 25( 5): 727-756.[citado 2024 nov. 02 ] Available from: https://doi.org/10.4310/AJM.2021.v25.n5.a6
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Holonomic modules for rings of invariant differential operators. International Journal of Algebra and Computation, v. 31, n. 04, p. 605-622, 2021Tradução . . Disponível em: https://doi.org/10.1142/S0218196721500296. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., & Schwarz, J. F. (2021). Holonomic modules for rings of invariant differential operators. International Journal of Algebra and Computation, 31( 04), 605-622. doi:10.1142/S0218196721500296
    • NLM

      Futorny V, Schwarz JF. Holonomic modules for rings of invariant differential operators [Internet]. International Journal of Algebra and Computation. 2021 ; 31( 04): 605-622.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1142/S0218196721500296
    • Vancouver

      Futorny V, Schwarz JF. Holonomic modules for rings of invariant differential operators [Internet]. International Journal of Algebra and Computation. 2021 ; 31( 04): 605-622.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1142/S0218196721500296
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando e SHESTAKOV, Ivan P. LD-stability for Goldie rings. Journal of Pure and Applied Algebra, v. 225, n. 11, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2021.106741. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Schwarz, J. F., & Shestakov, I. P. (2021). LD-stability for Goldie rings. Journal of Pure and Applied Algebra, 225( 11), 1-14. doi:10.1016/j.jpaa.2021.106741
    • NLM

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106741
    • Vancouver

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106741
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M. et al. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, v. 612, p. 188-205, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.10.040. Acesso em: 02 nov. 2024.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: Bulletin of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMIREZ, Luis Enrique. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3). Bulletin of Mathematical Sciences, v. 11, n. artigo 2130001, p. 1-109, 2021Tradução . . Disponível em: https://doi.org/10.1142/S1664360721300012. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., & Ramirez, L. E. (2021). Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3). Bulletin of Mathematical Sciences, 11( artigo 2130001), 1-109. doi:10.1142/S1664360721300012
    • NLM

      Futorny V, Grantcharov D, Ramirez LE. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3) [Internet]. Bulletin of Mathematical Sciences. 2021 ; 11( artigo 2130001): 1-109.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1142/S1664360721300012
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3) [Internet]. Bulletin of Mathematical Sciences. 2021 ; 11( artigo 2130001): 1-109.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1142/S1664360721300012
  • Source: Mathematical Research Letters. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e RIGAL, Laurent e SOLOTAR, Andrea. Weight modules of quantum Weyl algebras. Mathematical Research Letters, v. 27, n. 6, p. 1707-1753, 2020Tradução . . Disponível em: https://doi.org/10.4310/MRL.2020.v27.n6.a6. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Rigal, L., & Solotar, A. (2020). Weight modules of quantum Weyl algebras. Mathematical Research Letters, 27( 6), 1707-1753. doi:10.4310/MRL.2020.v27.n6.a6
    • NLM

      Futorny V, Rigal L, Solotar A. Weight modules of quantum Weyl algebras [Internet]. Mathematical Research Letters. 2020 ; 27( 6): 1707-1753.[citado 2024 nov. 02 ] Available from: https://doi.org/10.4310/MRL.2020.v27.n6.a6
    • Vancouver

      Futorny V, Rigal L, Solotar A. Weight modules of quantum Weyl algebras [Internet]. Mathematical Research Letters. 2020 ; 27( 6): 1707-1753.[citado 2024 nov. 02 ] Available from: https://doi.org/10.4310/MRL.2020.v27.n6.a6
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. Journal of Algebra, v. 556, p. 412-436, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.02.032. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., Ramirez, L. E., & Zadunaisky, P. (2020). Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. Journal of Algebra, 556, 412-436. doi:10.1016/j.jalgebra.2020.02.032
    • NLM

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules [Internet]. Journal of Algebra. 2020 ; 556 412-436.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.02.032
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules [Internet]. Journal of Algebra. 2020 ; 556 412-436.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.02.032
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Noncommutative Noether’s problem vs classic Noether’s problem. Mathematische Zeitschrift, v. 295, p. 1323-1335, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00209-019-02397-4. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., & Schwarz, J. F. (2020). Noncommutative Noether’s problem vs classic Noether’s problem. Mathematische Zeitschrift, 295, 1323-1335. doi:10.1007/s00209-019-02397-4
    • NLM

      Futorny V, Schwarz JF. Noncommutative Noether’s problem vs classic Noether’s problem [Internet]. Mathematische Zeitschrift. 2020 ; 295 1323-1335.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00209-019-02397-4
    • Vancouver

      Futorny V, Schwarz JF. Noncommutative Noether’s problem vs classic Noether’s problem [Internet]. Mathematische Zeitschrift. 2020 ; 295 1323-1335.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00209-019-02397-4
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr e FUTORNY, Vyacheslav. Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, v. 47, n. 10, p. 4114–4124, 2019Tradução . . Disponível em: https://doi.org/10.1080/00927872.2019.1579336. Acesso em: 02 nov. 2024.
    • APA

      Bavula, V., & Futorny, V. (2019). Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, 47( 10), 4114–4124. doi:10.1080/00927872.2019.1579336
    • NLM

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2019.1579336
    • Vancouver

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2019.1579336
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e IUSENKO, Kostiantyn. Stable representations of posets. Journal of Pure and Applied Algebra, v. 223, n. 12, p. 5251-5278, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2019.03.020. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., & Iusenko, K. (2019). Stable representations of posets. Journal of Pure and Applied Algebra, 223( 12), 5251-5278. doi:10.1016/j.jpaa.2019.03.020
    • NLM

      Futorny V, Iusenko K. Stable representations of posets [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223( 12): 5251-5278.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jpaa.2019.03.020
    • Vancouver

      Futorny V, Iusenko K. Stable representations of posets [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223( 12): 5251-5278.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jpaa.2019.03.020
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Quantum linear Galois orders. Communications in Algebra, v. 47, n. 12, p. 5361–5369, 2019Tradução . . Disponível em: https://doi.org/10.1080/00927872.2019.1623236. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., & Schwarz, J. F. (2019). Quantum linear Galois orders. Communications in Algebra, 47( 12), 5361–5369. doi:10.1080/00927872.2019.1623236
    • NLM

      Futorny V, Schwarz JF. Quantum linear Galois orders [Internet]. Communications in Algebra. 2019 ; 47( 12): 5361–5369.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2019.1623236
    • Vancouver

      Futorny V, Schwarz JF. Quantum linear Galois orders [Internet]. Communications in Algebra. 2019 ; 47( 12): 5361–5369.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2019.1623236
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TENSORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GROCHOW, Joshua A. e SERGEICHUK, Vladimir V. Wildness for tensors. Linear Algebra and its Applications, v. 566, p. 212-244, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.12.022. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Grochow, J. A., & Sergeichuk, V. V. (2019). Wildness for tensors. Linear Algebra and its Applications, 566, 212-244. doi:10.1016/j.laa.2018.12.022
    • NLM

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
    • Vancouver

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, V e BEKKERT, V e FUTORNY, Vyacheslav. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators. Proceedings of the American Mathematical Society, v. 146, n. 6, p. 2373-2380, 2018Tradução . . Disponível em: https://doi.org/10.1090/proc/13985. Acesso em: 02 nov. 2024.
    • APA

      Bavula, V., Bekkert, V., & Futorny, V. (2018). Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators. Proceedings of the American Mathematical Society, 146( 6), 2373-2380. doi:10.1090/proc/13985
    • NLM

      Bavula V, Bekkert V, Futorny V. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 6): 2373-2380.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/proc/13985
    • Vancouver

      Bavula V, Bekkert V, Futorny V. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 6): 2373-2380.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/proc/13985
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, v. 536, p. 201-209, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.09.019. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., Petravchuk, A. P., & Sergeichuk, V. V. (2018). Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, 536, 201-209. doi:10.1016/j.laa.2017.09.019
    • NLM

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
    • Vancouver

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESHMATOV, Farkhod et al. Noncommutative Noether’s problem for complex reflection groups. Proceedings of the American Mathematical Society, v. 145, n. 12, p. 5043-5052, 2017Tradução . . Disponível em: https://doi.org/10.1090/proc/13646. Acesso em: 02 nov. 2024.
    • APA

      Eshmatov, F., Futorny, V., Ovsienko, S., & Schwarz, J. F. (2017). Noncommutative Noether’s problem for complex reflection groups. Proceedings of the American Mathematical Society, 145( 12), 5043-5052. doi:10.1090/proc/13646
    • NLM

      Eshmatov F, Futorny V, Ovsienko S, Schwarz JF. Noncommutative Noether’s problem for complex reflection groups [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 12): 5043-5052.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/proc/13646
    • Vancouver

      Eshmatov F, Futorny V, Ovsienko S, Schwarz JF. Noncommutative Noether’s problem for complex reflection groups [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 12): 5043-5052.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/proc/13646
  • Source: Algebra and Discrete Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Galois orders of symmetric differential operators. Algebra and Discrete Mathematics, v. 23, n. 1, p. 35-46, 2017Tradução . . Disponível em: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/442. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., & Schwarz, J. F. (2017). Galois orders of symmetric differential operators. Algebra and Discrete Mathematics, 23( 1), 35-46. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/442
    • NLM

      Futorny V, Schwarz JF. Galois orders of symmetric differential operators [Internet]. Algebra and Discrete Mathematics. 2017 ; 23( 1): 35-46.[citado 2024 nov. 02 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/442
    • Vancouver

      Futorny V, Schwarz JF. Galois orders of symmetric differential operators [Internet]. Algebra and Discrete Mathematics. 2017 ; 23( 1): 35-46.[citado 2024 nov. 02 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/442
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, v. 519, p. 278-295, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.01.006. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e IYER, Uma N. Representations of Dq(k[x]). Israel Journal of Mathematics, v. 212, n. 1, p. 473-506, 2016Tradução . . Disponível em: https://doi.org/10.1007/s11856-016-1305-x. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., & Iyer, U. N. (2016). Representations of Dq(k[x]). Israel Journal of Mathematics, 212( 1), 473-506. doi:10.1007/s11856-016-1305-x
    • NLM

      Futorny V, Iyer UN. Representations of Dq(k[x]) [Internet]. Israel Journal of Mathematics. 2016 ; 212( 1): 473-506.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11856-016-1305-x
    • Vancouver

      Futorny V, Iyer UN. Representations of Dq(k[x]) [Internet]. Israel Journal of Mathematics. 2016 ; 212( 1): 473-506.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11856-016-1305-x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024