Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators (2018)
- Authors:
- Autor USP: FUTORNY, VYACHESLAV - IME
- Unidade: IME
- DOI: 10.1090/proc/13985
- Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS
- Keywords: the algebra of polynomial integro-differential operators; generalized weight module; indecomposable module
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2018
- Source:
- Título: Proceedings of the American Mathematical Society
- ISSN: 0002-9939
- Volume/Número/Paginação/Ano: v. 146, n. 6, p. 2373-2380, 2018
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BAVULA, V e BEKKERT, V e FUTORNY, Vyacheslav. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators. Proceedings of the American Mathematical Society, v. 146, n. 6, p. 2373-2380, 2018Tradução . . Disponível em: https://doi.org/10.1090/proc/13985. Acesso em: 23 jan. 2026. -
APA
Bavula, V., Bekkert, V., & Futorny, V. (2018). Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators. Proceedings of the American Mathematical Society, 146( 6), 2373-2380. doi:10.1090/proc/13985 -
NLM
Bavula V, Bekkert V, Futorny V. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 6): 2373-2380.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1090/proc/13985 -
Vancouver
Bavula V, Bekkert V, Futorny V. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 6): 2373-2380.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1090/proc/13985 - Weight modules of quantum Weyl algebras
- Miniversal deformations of matrices of bilinear forms
- Integrable modules for affine Lie superalgebras
- Change of the *congruence canonical form of 2-by-2 matrices under perturbations
- A reduction theorem for highest weight modules over toroidal Lie algebras
- Representations of Galois algebras
- Change of the congruence canonical form of 2x 2 nd 3 x 3 matrices under perturbations
- Classification of irreducible representations of Lie algebra of vector fields on a torus
- Derived tame local and two-point algebras
- Weyl modules associated to Kac–Moody Lie algebras
Informações sobre o DOI: 10.1090/proc/13985 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2875548.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
