Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In (2021)
- Authors:
- Autor USP: FUTORNY, VYACHESLAV - IME
- Unidade: IME
- DOI: 10.4310/AJM.2021.v25.n5.a6
- Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS
- Keywords: the algebra of polynomial integro-differential operators; weight and generalized weight modules; indecomposable module; simple module; finite representation type; tame and wild
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Asian Journal of Mathematics
- ISSN: 1093-6106
- Volume/Número/Paginação/Ano: v. 25, n. 5, p. 727-756, 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BAVULA, Volodymyr e BEKKERT, Viktor e FUTORNY, Vyacheslav. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In. Asian Journal of Mathematics, v. 25, n. 5, p. 727-756, 2021Tradução . . Disponível em: https://doi.org/10.4310/AJM.2021.v25.n5.a6. Acesso em: 22 jan. 2026. -
APA
Bavula, V., Bekkert, V., & Futorny, V. (2021). Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In. Asian Journal of Mathematics, 25( 5), 727-756. doi:10.4310/AJM.2021.v25.n5.a6 -
NLM
Bavula V, Bekkert V, Futorny V. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In [Internet]. Asian Journal of Mathematics. 2021 ; 25( 5): 727-756.[citado 2026 jan. 22 ] Available from: https://doi.org/10.4310/AJM.2021.v25.n5.a6 -
Vancouver
Bavula V, Bekkert V, Futorny V. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In [Internet]. Asian Journal of Mathematics. 2021 ; 25( 5): 727-756.[citado 2026 jan. 22 ] Available from: https://doi.org/10.4310/AJM.2021.v25.n5.a6 - Weight modules of quantum Weyl algebras
- Miniversal deformations of matrices of bilinear forms
- Integrable modules for affine Lie superalgebras
- Change of the *congruence canonical form of 2-by-2 matrices under perturbations
- A reduction theorem for highest weight modules over toroidal Lie algebras
- Representations of Galois algebras
- Change of the congruence canonical form of 2x 2 nd 3 x 3 matrices under perturbations
- Classification of irreducible representations of Lie algebra of vector fields on a torus
- Derived tame local and two-point algebras
- Weyl modules associated to Kac–Moody Lie algebras
Informações sobre o DOI: 10.4310/AJM.2021.v25.n5.a6 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3087591 - Explicit descri... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
