Filtros : "ÁLGEBRA LINEAR" "Estados Unidos" Removido: "Universidade Federal de Itajubá (UNIFEI)" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, FORMAS QUADRÁTICAS, FORMAS BILINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Victor Senoguchi et al. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, v. 611, p. 118-134, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.12.005. Acesso em: 09 nov. 2024.
    • APA

      Borges, V. S., Kashuba, I., Sergeichuk, V. V., Sodré, E. V., & Zaidan, A. (2021). Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, 611, 118-134. doi:10.1016/j.laa.2020.12.005
    • NLM

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005
    • Vancouver

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005
  • Source: Linear Algebra and its Applications. Conference titles: Linear Algebra without Borders - ILAS Conference. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. Disponível em: https://doi.org/10.1016/j.laa.2020.12.009. Acesso em: 09 nov. 2024. , 2021
    • APA

      Futorny, V., Klymchuk, T., Klymenko, O., Sergeichuk, V. V., & Shvai, N. (2021). Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. doi:10.1016/j.laa.2020.12.009
    • NLM

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
    • Vancouver

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
  • Source: Real Analysis Exchange. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Oswaldo Rio Branco de. The exponential matrix: an explicit formula by an elementary method. Real Analysis Exchange, v. 46, n. 1, p. 99-106, 2021Tradução . . Disponível em: https://doi.org/10.14321/realanalexch.46.1.0099. Acesso em: 09 nov. 2024.
    • APA

      Oliveira, O. R. B. de. (2021). The exponential matrix: an explicit formula by an elementary method. Real Analysis Exchange, 46( 1), 99-106. doi:10.14321/realanalexch.46.1.0099
    • NLM

      Oliveira ORB de. The exponential matrix: an explicit formula by an elementary method [Internet]. Real Analysis Exchange. 2021 ; 46( 1): 99-106.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14321/realanalexch.46.1.0099
    • Vancouver

      Oliveira ORB de. The exponential matrix: an explicit formula by an elementary method [Internet]. Real Analysis Exchange. 2021 ; 46( 1): 99-106.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14321/realanalexch.46.1.0099
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M. et al. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, v. 612, p. 188-205, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.10.040. Acesso em: 09 nov. 2024.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKII, Genrich R. et al. Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, v. 609, p. 317-331, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.09.018. Acesso em: 09 nov. 2024.
    • APA

      Belitskii, G. R., Futorny, V., Muzychuk, M., & Sergeichuk, V. V. (2021). Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, 609, 317-331. doi:10.1016/j.laa.2020.09.018
    • NLM

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
    • Vancouver

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ESPAÇOS COM PRODUTO INTERNO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAALIM, Jonathan V. et al. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, v. 587, p. 92-110, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2019.11.004. Acesso em: 09 nov. 2024.
    • APA

      Caalim, J. V., Futorny, V., Sergeichuk, V. V., & Tanaka, Y. -ichi. (2020). Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, 587, 92-110. doi:10.1016/j.laa.2019.11.004
    • NLM

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
    • Vancouver

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
  • Source: Rocky Mountain Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOURENÇO, Mary Lilian e VIEIRA, Daniela Mariz Silva. Strong algebrability and residuality on certain sets of analytic functions. Rocky Mountain Journal of Mathematics, v. 49, n. 6, p. 1961-1972, 2019Tradução . . Disponível em: https://doi.org/10.1216/rmj-2019-49-6-1961. Acesso em: 09 nov. 2024.
    • APA

      Lourenço, M. L., & Vieira, D. M. S. (2019). Strong algebrability and residuality on certain sets of analytic functions. Rocky Mountain Journal of Mathematics, 49( 6), 1961-1972. doi:10.1216/rmj-2019-49-6-1961
    • NLM

      Lourenço ML, Vieira DMS. Strong algebrability and residuality on certain sets of analytic functions [Internet]. Rocky Mountain Journal of Mathematics. 2019 ; 49( 6): 1961-1972.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1216/rmj-2019-49-6-1961
    • Vancouver

      Lourenço ML, Vieira DMS. Strong algebrability and residuality on certain sets of analytic functions [Internet]. Rocky Mountain Journal of Mathematics. 2019 ; 49( 6): 1961-1972.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1216/rmj-2019-49-6-1961
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger et al. On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, v. 176, n. 3, p. 625-633, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10957-018-1229-1. Acesso em: 09 nov. 2024.
    • APA

      Behling, R., Haeser, G., Ramos, A., & Viana, D. S. (2018). On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, 176( 3), 625-633. doi:10.1007/s10957-018-1229-1
    • NLM

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
    • Vancouver

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TRANSFORMAÇÕES LINEARES, TRANSFORMAÇÕES SEMILINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VANEGAS, Elkin Oveimar Quintero e FERNÁNDEZ, Juan Carlos Gutiérrez. Nilpotent linear spaces and Albert's Problem. Linear Algebra and its Applications, v. 518, p. 57-78, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.12.026. Acesso em: 09 nov. 2024.
    • APA

      Vanegas, E. O. Q., & Fernández, J. C. G. (2017). Nilpotent linear spaces and Albert's Problem. Linear Algebra and its Applications, 518, 57-78. doi:10.1016/j.laa.2016.12.026
    • NLM

      Vanegas EOQ, Fernández JCG. Nilpotent linear spaces and Albert's Problem [Internet]. Linear Algebra and its Applications. 2017 ; 518 57-78.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.12.026
    • Vancouver

      Vanegas EOQ, Fernández JCG. Nilpotent linear spaces and Albert's Problem [Internet]. Linear Algebra and its Applications. 2017 ; 518 57-78.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.12.026
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael et al. The max-plus algebra of exponent matrices of tiled orders. Journal of Algebra, v. 490, p. 1-20, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.05.045. Acesso em: 09 nov. 2024.
    • APA

      Dokuchaev, M., Kirichenko, V., Kudryavtseva, G., & Plakhotnyk, M. (2017). The max-plus algebra of exponent matrices of tiled orders. Journal of Algebra, 490, 1-20. doi:10.1016/j.jalgebra.2017.05.045
    • NLM

      Dokuchaev M, Kirichenko V, Kudryavtseva G, Plakhotnyk M. The max-plus algebra of exponent matrices of tiled orders [Internet]. Journal of Algebra. 2017 ;490 1-20.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.05.045
    • Vancouver

      Dokuchaev M, Kirichenko V, Kudryavtseva G, Plakhotnyk M. The max-plus algebra of exponent matrices of tiled orders [Internet]. Journal of Algebra. 2017 ;490 1-20.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.05.045
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 09 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLYMCHUK, Tatiana e SERGEICHUK, Vladimir V. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, v. 510, p. 246-258, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.08.022. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2016). Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, 510, 246-258. doi:10.1016/j.laa.2016.08.022
    • NLM

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
    • Vancouver

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence. Linear Algebra and its Applications, v. 469, p. 305-334, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.11.004. Acesso em: 09 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Kågström, B., Klimenko, L., & Sergeichuk, V. V. (2015). Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence. Linear Algebra and its Applications, 469, 305-334. doi:10.1016/j.laa.2014.11.004
    • NLM

      Dmytryshyn AR, Futorny V, Kågström B, Klimenko L, Sergeichuk VV. Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence [Internet]. Linear Algebra and its Applications. 2015 ; 469 305-334.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2014.11.004
    • Vancouver

      Dmytryshyn AR, Futorny V, Kågström B, Klimenko L, Sergeichuk VV. Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence [Internet]. Linear Algebra and its Applications. 2015 ; 469 305-334.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2014.11.004
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, OPERADORES LINEARES, ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e SERGEICHUK, Vladimir V. Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, v. 446, p. 388-420, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.01.016. Acesso em: 09 nov. 2024.
    • APA

      Dmytryshyn, A. R., & Sergeichuk, V. V. (2014). Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, 446, 388-420. doi:10.1016/j.laa.2014.01.016
    • NLM

      Dmytryshyn AR, Sergeichuk VV. Miniversal deformations of matrices under *congruence and reducing transformations [Internet]. Linear Algebra and its Applications. 2014 ; 446 388-420.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2014.01.016
    • Vancouver

      Dmytryshyn AR, Sergeichuk VV. Miniversal deformations of matrices under *congruence and reducing transformations [Internet]. Linear Algebra and its Applications. 2014 ; 446 388-420.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2014.01.016
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e MURAKAMI, Lúcia Satie Ikemoto. Rationality of the Hilbert series of Hopf-invariants of free algebras. Proceedings of the American Mathematical Society, v. 142, n. 3, p. 821-826, 2014Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2013-11830-7. Acesso em: 09 nov. 2024.
    • APA

      Ferreira, V. de O., & Murakami, L. S. I. (2014). Rationality of the Hilbert series of Hopf-invariants of free algebras. Proceedings of the American Mathematical Society, 142( 3), 821-826. doi:10.1090/S0002-9939-2013-11830-7
    • NLM

      Ferreira V de O, Murakami LSI. Rationality of the Hilbert series of Hopf-invariants of free algebras [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 3): 821-826.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/S0002-9939-2013-11830-7
    • Vancouver

      Ferreira V de O, Murakami LSI. Rationality of the Hilbert series of Hopf-invariants of free algebras [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 3): 821-826.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/S0002-9939-2013-11830-7
  • Source: Electronic Journal of Linear Algebra. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, OPERADORES LINEARES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLIMENKO, Lena e SERGEICHUK, Vladimir V. Change of the *congruence canonical form of 2-by-2 matrices under perturbations. Electronic Journal of Linear Algebra, v. 27, p. 146-154, 2014Tradução . . Disponível em: https://doi.org/10.13001/1081-3810.1608. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Klimenko, L., & Sergeichuk, V. V. (2014). Change of the *congruence canonical form of 2-by-2 matrices under perturbations. Electronic Journal of Linear Algebra, 27, 146-154. doi:10.13001/1081-3810.1608
    • NLM

      Futorny V, Klimenko L, Sergeichuk VV. Change of the *congruence canonical form of 2-by-2 matrices under perturbations [Internet]. Electronic Journal of Linear Algebra. 2014 ; 27 146-154.[citado 2024 nov. 09 ] Available from: https://doi.org/10.13001/1081-3810.1608
    • Vancouver

      Futorny V, Klimenko L, Sergeichuk VV. Change of the *congruence canonical form of 2-by-2 matrices under perturbations [Internet]. Electronic Journal of Linear Algebra. 2014 ; 27 146-154.[citado 2024 nov. 09 ] Available from: https://doi.org/10.13001/1081-3810.1608
  • Source: AIAA Journal. Unidade: EESC

    Subjects: MECÂNICA DOS FLUÍDOS, ÁLGEBRA LINEAR, EQUAÇÕES DE NAVIER-STOKES, ENGENHARIA AERONÁUTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GENNARO, Elmer Mateus et al. Sparse techniques in global flow instability with application to compressible leading-edge flow. AIAA Journal, v. 51, n. 9, p. Se 2013, 2013Tradução . . Disponível em: https://doi.org/10.2514/1.J051816. Acesso em: 09 nov. 2024.
    • APA

      Gennaro, E. M., Rodríguez, D., Medeiros, M. A. F. de, & Theofilis, V. (2013). Sparse techniques in global flow instability with application to compressible leading-edge flow. AIAA Journal, 51( 9), Se 2013. doi:10.2514/1.J051816
    • NLM

      Gennaro EM, Rodríguez D, Medeiros MAF de, Theofilis V. Sparse techniques in global flow instability with application to compressible leading-edge flow [Internet]. AIAA Journal. 2013 ; 51( 9): Se 2013.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2514/1.J051816
    • Vancouver

      Gennaro EM, Rodríguez D, Medeiros MAF de, Theofilis V. Sparse techniques in global flow instability with application to compressible leading-edge flow [Internet]. AIAA Journal. 2013 ; 51( 9): Se 2013.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2514/1.J051816
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Debora Duarte de et al. Cycles of linear and semilinear mappings. Linear Algebra and its Applications, v. 438, n. 8, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2012.12.023. Acesso em: 09 nov. 2024.
    • APA

      Oliveira, D. D. de, Futorny, V., Klimchuk, T., kovalenko, D., & Sergeichuk, V. (2013). Cycles of linear and semilinear mappings. Linear Algebra and its Applications, 438( 8). doi:10.1016/j.laa.2012.12.023
    • NLM

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
    • Vancouver

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
  • Source: Journal of Mathematical Physics. Unidade: IF

    Subjects: PROBABILIDADE (TEORIA), PROCESSOS ESTOCÁSTICOS, MOVIMENTO BROWNIANO, ÁLGEBRA LINEAR

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VENEZIANI, Alexei Magalhães e PEREIRA, Tiago e MARCHETTI, Domingos Humberto Urbano. Asymptotic integral kernel for ensembles of random normal matrices with radial potentials. Journal of Mathematical Physics, v. 53, n. 2, p. 023303/1-023303/21, 2012Tradução . . Disponível em: https://doi.org/10.1063/1.3688293. Acesso em: 09 nov. 2024.
    • APA

      Veneziani, A. M., Pereira, T., & Marchetti, D. H. U. (2012). Asymptotic integral kernel for ensembles of random normal matrices with radial potentials. Journal of Mathematical Physics, 53( 2), 023303/1-023303/21. doi:10.1063/1.3688293
    • NLM

      Veneziani AM, Pereira T, Marchetti DHU. Asymptotic integral kernel for ensembles of random normal matrices with radial potentials [Internet]. Journal of Mathematical Physics. 2012 ; 53( 2): 023303/1-023303/21.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1063/1.3688293
    • Vancouver

      Veneziani AM, Pereira T, Marchetti DHU. Asymptotic integral kernel for ensembles of random normal matrices with radial potentials [Internet]. Journal of Mathematical Physics. 2012 ; 53( 2): 023303/1-023303/21.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1063/1.3688293
  • Source: Linear Algebra ans its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladmir V. A canonical form for nonderogatory matrices under unitary similarity. Linear Algebra ans its Applications, v. 435, n. 4, p. 830-841, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.01.042. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2011). A canonical form for nonderogatory matrices under unitary similarity. Linear Algebra ans its Applications, 435( 4), 830-841. doi:10.1016/j.laa.2011.01.042
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. A canonical form for nonderogatory matrices under unitary similarity [Internet]. Linear Algebra ans its Applications. 2011 ; 435( 4): 830-841.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2011.01.042
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. A canonical form for nonderogatory matrices under unitary similarity [Internet]. Linear Algebra ans its Applications. 2011 ; 435( 4): 830-841.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2011.01.042

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024