Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product (2021)
- Authors:
- USP affiliated authors: KASHUBA, IRYNA - IME ; BORGES, VICTOR SENOGUCHI - IME ; SODRE, EDUARDO VENTILARI - IME ; ZAIDAN, ANDRÉ EDUARDO - IME
- Unidade: IME
- DOI: 10.1016/j.laa.2020.12.005
- Subjects: ÁLGEBRA LINEAR; ÁLGEBRA MULTILINEAR; FORMAS QUADRÁTICAS; FORMAS BILINEARES
- Keywords: Indefinite scalar product; Selfadjoint operators; Quaternions
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Linear Algebra and its Applications
- ISSN: 0024-3795
- Volume/Número/Paginação/Ano: v. 611, p. 118-134, 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BORGES, Victor Senoguchi et al. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, v. 611, p. 118-134, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.12.005. Acesso em: 23 jan. 2026. -
APA
Borges, V. S., Kashuba, I., Sergeichuk, V. V., Sodré, E. V., & Zaidan, A. (2021). Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, 611, 118-134. doi:10.1016/j.laa.2020.12.005 -
NLM
Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005 -
Vancouver
Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005 - Representações da álgebra de Lie de campos vetoriais sobre um toro N-dimensional
- Reductions in representation theory of Lie algebras of vector fields
- Free field realizations of induced modules for affine Lie algebras
- Indecomposable modules over Kantor superalgebras
- Variety of Jordan algebras in small dimensions
- Representations of simple Jordan superalgebras
- São Paulo Journal of Mathematical Sciences
- Geometric classification of nilpotent Jordan algebras of dimension five
- Discrete and continuous exponential transforms of simple Lie groups of rank two
- Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring
Informações sobre o DOI: 10.1016/j.laa.2020.12.005 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3014669.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
