Filtros : "ÁLGEBRA LINEAR" "Ucrânia" Removido: "Universidade Federal de Itajubá (UNIFEI)" Limpar

Filtros



Refine with date range


  • Source: Mathematics. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAZEMI, Abdullah et al. Three representation types for systems of forms and linear maps. Mathematics, v. 9, n. art. 455, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.3390/math9050455. Acesso em: 09 nov. 2024.
    • APA

      Alazemi, A., Anđelić, M., da Fonseca, C. M., Futorny, V., & Sergeichuk, V. V. (2021). Three representation types for systems of forms and linear maps. Mathematics, 9( art. 455), 1-12. doi:10.3390/math9050455
    • NLM

      Alazemi A, Anđelić M, da Fonseca CM, Futorny V, Sergeichuk VV. Three representation types for systems of forms and linear maps [Internet]. Mathematics. 2021 ; 9( art. 455): 1-12.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/math9050455
    • Vancouver

      Alazemi A, Anđelić M, da Fonseca CM, Futorny V, Sergeichuk VV. Three representation types for systems of forms and linear maps [Internet]. Mathematics. 2021 ; 9( art. 455): 1-12.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/math9050455
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, FORMAS QUADRÁTICAS, FORMAS BILINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Victor Senoguchi et al. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, v. 611, p. 118-134, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.12.005. Acesso em: 09 nov. 2024.
    • APA

      Borges, V. S., Kashuba, I., Sergeichuk, V. V., Sodré, E. V., & Zaidan, A. (2021). Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, 611, 118-134. doi:10.1016/j.laa.2020.12.005
    • NLM

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005
    • Vancouver

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005
  • Source: Linear Algebra and its Applications. Conference titles: Linear Algebra without Borders - ILAS Conference. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. Disponível em: https://doi.org/10.1016/j.laa.2020.12.009. Acesso em: 09 nov. 2024. , 2021
    • APA

      Futorny, V., Klymchuk, T., Klymenko, O., Sergeichuk, V. V., & Shvai, N. (2021). Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. doi:10.1016/j.laa.2020.12.009
    • NLM

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
    • Vancouver

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M. et al. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, v. 612, p. 188-205, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.10.040. Acesso em: 09 nov. 2024.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKII, Genrich R. et al. Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, v. 609, p. 317-331, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.09.018. Acesso em: 09 nov. 2024.
    • APA

      Belitskii, G. R., Futorny, V., Muzychuk, M., & Sergeichuk, V. V. (2021). Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, 609, 317-331. doi:10.1016/j.laa.2020.09.018
    • NLM

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
    • Vancouver

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ESPAÇOS COM PRODUTO INTERNO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAALIM, Jonathan V. et al. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, v. 587, p. 92-110, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2019.11.004. Acesso em: 09 nov. 2024.
    • APA

      Caalim, J. V., Futorny, V., Sergeichuk, V. V., & Tanaka, Y. -ichi. (2020). Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, 587, 92-110. doi:10.1016/j.laa.2019.11.004
    • NLM

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
    • Vancouver

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, v. 536, p. 201-209, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.09.019. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., Petravchuk, A. P., & Sergeichuk, V. V. (2018). Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, 536, 201-209. doi:10.1016/j.laa.2017.09.019
    • NLM

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
    • Vancouver

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Carlos M. et al. Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, v. 515, n. , p. 1-5, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.11.012. Acesso em: 09 nov. 2024.
    • APA

      Fonseca, C. M., Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2017). Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, 515( ), 1-5. doi:10.1016/j.laa.2016.11.012
    • NLM

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
    • Vancouver

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael et al. The max-plus algebra of exponent matrices of tiled orders. Journal of Algebra, v. 490, p. 1-20, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.05.045. Acesso em: 09 nov. 2024.
    • APA

      Dokuchaev, M., Kirichenko, V., Kudryavtseva, G., & Plakhotnyk, M. (2017). The max-plus algebra of exponent matrices of tiled orders. Journal of Algebra, 490, 1-20. doi:10.1016/j.jalgebra.2017.05.045
    • NLM

      Dokuchaev M, Kirichenko V, Kudryavtseva G, Plakhotnyk M. The max-plus algebra of exponent matrices of tiled orders [Internet]. Journal of Algebra. 2017 ;490 1-20.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.05.045
    • Vancouver

      Dokuchaev M, Kirichenko V, Kudryavtseva G, Plakhotnyk M. The max-plus algebra of exponent matrices of tiled orders [Internet]. Journal of Algebra. 2017 ;490 1-20.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.05.045
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, v. 519, p. 278-295, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.01.006. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 09 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLYMCHUK, Tatiana e SERGEICHUK, Vladimir V. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, v. 510, p. 246-258, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.08.022. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2016). Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, 510, 246-258. doi:10.1016/j.laa.2016.08.022
    • NLM

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
    • Vancouver

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Debora Duarte de et al. Cycles of linear and semilinear mappings. Linear Algebra and its Applications, v. 438, n. 8, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2012.12.023. Acesso em: 09 nov. 2024.
    • APA

      Oliveira, D. D. de, Futorny, V., Klimchuk, T., kovalenko, D., & Sergeichuk, V. (2013). Cycles of linear and semilinear mappings. Linear Algebra and its Applications, 438( 8). doi:10.1016/j.laa.2012.12.023
    • NLM

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
    • Vancouver

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
  • Source: Linear Algebra ans its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladmir V. A canonical form for nonderogatory matrices under unitary similarity. Linear Algebra ans its Applications, v. 435, n. 4, p. 830-841, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.01.042. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2011). A canonical form for nonderogatory matrices under unitary similarity. Linear Algebra ans its Applications, 435( 4), 830-841. doi:10.1016/j.laa.2011.01.042
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. A canonical form for nonderogatory matrices under unitary similarity [Internet]. Linear Algebra ans its Applications. 2011 ; 435( 4): 830-841.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2011.01.042
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. A canonical form for nonderogatory matrices under unitary similarity [Internet]. Linear Algebra ans its Applications. 2011 ; 435( 4): 830-841.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2011.01.042
  • Source: Journal of Mathematical Sciences. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, MATRIZES, OPERADORES, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Classification of squared normal operators in unitary and Euclidean spaces. Journal of Mathematical Sciences, p. 950-955, 2008Tradução . . Disponível em: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2008). Classification of squared normal operators in unitary and Euclidean spaces. Journal of Mathematical Sciences, 950-955. Recuperado de https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Classification of squared normal operators in unitary and Euclidean spaces [Internet]. Journal of Mathematical Sciences. 2008 ; 950-955.[citado 2024 nov. 09 ] Available from: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Classification of squared normal operators in unitary and Euclidean spaces [Internet]. Journal of Mathematical Sciences. 2008 ; 950-955.[citado 2024 nov. 09 ] Available from: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024