Filtros : "quadratic differential system" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 18 fev. 2026.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2026 fev. 18 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2026 fev. 18 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 35, p. 1-89, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.35. Acesso em: 18 fev. 2026.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 35), 1-89. doi:10.14232/ejqtde.2021.1.35
    • NLM

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2026 fev. 18 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2026 fev. 18 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026