Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node (2021)
- Authors:
- Autor USP: MOTA, MARCOS COUTINHO - ICMC
- Unidade: ICMC
- DOI: 10.14232/ejqtde.2021.1.35
- Subjects: TEORIA QUALITATIVA; ANÁLISE GLOBAL
- Keywords: quadratic differential system; structural stability; codimension two; phase portrait; saddle-node
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Electronic Journal of Qualitative Theory of Differential Equations
- ISSN: 1417-3875
- Volume/Número/Paginação/Ano: v. 2021, n. 35, p. 1-89, 2021
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 35, p. 1-89, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.35. Acesso em: 03 nov. 2024. -
APA
Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 35), 1-89. doi:10.14232/ejqtde.2021.1.35 -
NLM
Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2024 nov. 03 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35 -
Vancouver
Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2024 nov. 03 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35 - Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
- Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle
- Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A)
- Geometric analysis of quadratic differential systems with invariant ellipses
- Geometric analysis of quadratic differential systems with invariant ellipses
- Dynamic aspects of sprott BC chaotic system
- The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D)
Informações sobre o DOI: 10.14232/ejqtde.2021.1.35 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3028966.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas