Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability (2021)
- Authors:
- USP affiliated authors: OLIVEIRA, REGILENE DELAZARI DOS SANTOS - ICMC ; TRAVAGLINI, ANA MARIA - ICMC
- Unidade: ICMC
- DOI: 10.14232/ejqtde.2021.1.45
- Subjects: SINGULARIDADES; TEORIA QUALITATIVA; INVARIANTES
- Keywords: quadratic differential system; invariant algebraic curve; invariant hyperbola; Darboux integrability; Liouvillian integrability; configuration of invariant algebraic curves; bifurcation of configuration; singularity and bifurcation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Electronic Journal of Qualitative Theory of Differential Equations
- ISSN: 1417-3875
- Volume/Número/Paginação/Ano: v. 2021, n. 45, p. 1-90, 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 21 jan. 2026. -
APA
Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45 -
NLM
Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2026 jan. 21 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45 -
Vancouver
Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2026 jan. 21 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45 - Geometry and integrability of quadratic systems with invariant hyperbolas
- The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D)
- Integrability and geometry of quadratic differential systems with invariant hyperbolas
- Singular levels and topological invariants of Morse Bott systems on surfaces
- Limit cycles for a class of generalized Kukles discontinuous piecewise polynomial differential system
- Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines
- Global dynamical aspects of a generalized Sprott E differential system
- Global dynamical aspects of a generalized Chen-Wang differential system
- Limit cycles for two classes of control piecewise linear differential systems
- On the limit cycle of a Belousov-Zhabotinsky differential systems
Informações sobre o DOI: 10.14232/ejqtde.2021.1.45 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3035477.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
