Filtros : "phase portrait" Limpar

Filtros



Refine with date range


  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, v. 34, n. 11, p. 2430023-1-2430023-43, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0218127424300234. Acesso em: 27 jan. 2026.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2024). Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, 34( 11), 2430023-1-2430023-43. doi:10.1142/S0218127424300234
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1142/S0218127424300234
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1142/S0218127424300234
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 35, p. 1-89, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.35. Acesso em: 27 jan. 2026.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 35), 1-89. doi:10.14232/ejqtde.2021.1.35
    • NLM

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2026 jan. 27 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2026 jan. 27 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6876. Acesso em: 27 jan. 2026. , 2019
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2019). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6876
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;[citado 2026 jan. 27 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;[citado 2026 jan. 27 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876
  • Source: Nonlinear Analysis: Theory, Methods & Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e SOTOMAYOR, Jorge. Phase portraits of planar control systems. Nonlinear Analysis: Theory, Methods & Applications, v. 27, n. 10, p. 1177-1197, 1996Tradução . . Disponível em: https://doi.org/10.1016/0362-546X(95)00129-J. Acesso em: 27 jan. 2026.
    • APA

      Llibre, J., & Sotomayor, J. (1996). Phase portraits of planar control systems. Nonlinear Analysis: Theory, Methods & Applications, 27( 10), 1177-1197. doi:10.1016/0362-546X(95)00129-J
    • NLM

      Llibre J, Sotomayor J. Phase portraits of planar control systems [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 1996 ; 27( 10): 1177-1197.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1016/0362-546X(95)00129-J
    • Vancouver

      Llibre J, Sotomayor J. Phase portraits of planar control systems [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 1996 ; 27( 10): 1177-1197.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1016/0362-546X(95)00129-J

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026