Filtros : "Structural stability" Removido: "2021" Limpar

Filtros



Refine with date range


  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz. Stability of Morse-Smale maps. São Paulo Journal of Mathematical Sciences, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-022-00294-z. Acesso em: 06 jan. 2026.
    • APA

      Oliva, W. M. (2022). Stability of Morse-Smale maps. São Paulo Journal of Mathematical Sciences. doi:10.1007/s40863-022-00294-z
    • NLM

      Oliva WM. Stability of Morse-Smale maps [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ;[citado 2026 jan. 06 ] Available from: https://doi.org/10.1007/s40863-022-00294-z
    • Vancouver

      Oliva WM. Stability of Morse-Smale maps [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ;[citado 2026 jan. 06 ] Available from: https://doi.org/10.1007/s40863-022-00294-z
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, v. 30, n. 2, p. 687-718, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9567-x. Acesso em: 06 jan. 2026.
    • APA

      Aragão-Costa, É. R., Figueroa-López, R. N., Langa, J. A., & Lozada-Cruz, G. (2018). Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, 30( 2), 687-718. doi:10.1007/s10884-016-9567-x
    • NLM

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2026 jan. 06 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
    • Vancouver

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2026 jan. 06 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
  • Unidade: ICMC

    Subjects: ATRATORES, ANÁLISE FUNCIONAL, SISTEMAS DINÂMICOS, ÁLGEBRA LINEAR, SISTEMAS DE OPERADORES, SEMIGRUPOS DE OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FISCHER, Arthur Geromel. Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural. 2015. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2015. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/. Acesso em: 06 jan. 2026.
    • APA

      Fischer, A. G. (2015). Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/
    • NLM

      Fischer AG. Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural [Internet]. 2015 ;[citado 2026 jan. 06 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/
    • Vancouver

      Fischer AG. Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural [Internet]. 2015 ;[citado 2026 jan. 06 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/
  • Unidade: ICMC

    Subjects: HOLOMORFIA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS), SISTEMAS DINÂMICOS HOLOMORFOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Carlos Alberto Siqueira. Dynamics of holomorphic correspondences. 2015. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2015. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15012016-102442/. Acesso em: 06 jan. 2026.
    • APA

      Lima, C. A. S. (2015). Dynamics of holomorphic correspondences (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15012016-102442/
    • NLM

      Lima CAS. Dynamics of holomorphic correspondences [Internet]. 2015 ;[citado 2026 jan. 06 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15012016-102442/
    • Vancouver

      Lima CAS. Dynamics of holomorphic correspondences [Internet]. 2015 ;[citado 2026 jan. 06 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15012016-102442/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026