Filtros : "Pullback attractor" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 24 jan. 2026.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, v. 37, n. 3, p. 2565-2600, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 24 jan. 2026.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2025). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 37( 3), 2565-2600. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares et al. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, v. 365, p. 521-559, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.022. Acesso em: 24 jan. 2026.
    • APA

      Azevedo, V. T., Bonotto, E. de M., Cunha, A. C., & Nascimento, M. J. D. (2023). Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, 365, 521-559. doi:10.1016/j.jde.2023.04.022
    • NLM

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
    • Vancouver

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
  • Source: Nonlinear Differential Equations and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e WEBLER, C. M. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling. Nonlinear Differential Equations and Applications, v. 30, p. 1-29, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00030-023-00859-7. Acesso em: 24 jan. 2026.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Webler, C. M. (2023). Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling. Nonlinear Differential Equations and Applications, 30, 1-29. doi:10.1007/s00030-023-00859-7
    • NLM

      Bonotto E de M, Nascimento MJD, Webler CM. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling [Internet]. Nonlinear Differential Equations and Applications. 2023 ; 30 1-29.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s00030-023-00859-7
    • Vancouver

      Bonotto E de M, Nascimento MJD, Webler CM. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling [Internet]. Nonlinear Differential Equations and Applications. 2023 ; 30 1-29.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s00030-023-00859-7
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 24 jan. 2026.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e MARÍN-RUBIO, Pedro e CHUÑO, Christian Manuel Surco. Dynamics of wave equations with moving boundary. Journal of Differential Equations, v. 262, n. 5, p. 3317-3342, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2016.11.030. Acesso em: 24 jan. 2026.
    • APA

      Ma, T. F., Marín-Rubio, P., & Chuño, C. M. S. (2017). Dynamics of wave equations with moving boundary. Journal of Differential Equations, 262( 5), 3317-3342. doi:10.1016/j.jde.2016.11.030
    • NLM

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jde.2016.11.030
    • Vancouver

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jde.2016.11.030

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026