Filtros : "Nonlocal equations" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPANNA, Monia et al. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, n. 2, p. 1247-1283, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10248-4. Acesso em: 03 nov. 2024.
    • APA

      Capanna, M., Nakasato, J. C., Pereira, M. C., & Rossi, J. D. (2024). Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, 36( 2), 1247-1283. doi:10.1007/s10884-023-10248-4
    • NLM

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
    • Vancouver

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 03 nov. 2024.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES INTEGRAIS LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa e SASTRE-GOMEZ, Silvia. Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124729. Acesso em: 03 nov. 2024.
    • APA

      Pereira, M. C., & Sastre-Gomez, S. (2021). Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, 495( 2), 1-21. doi:10.1016/j.jmaa.2020.124729
    • NLM

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
    • Vancouver

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
  • Unidade: IME

    Subjects: ANÁLISE ASSINTÓTICA, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Patricia Neves de. Comportamento assintótico de problemas de difusão não locais e semilineares do tipo Neumann. 2019. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2019. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-29072019-184438/. Acesso em: 03 nov. 2024.
    • APA

      Araujo, P. N. de. (2019). Comportamento assintótico de problemas de difusão não locais e semilineares do tipo Neumann (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45132/tde-29072019-184438/
    • NLM

      Araujo PN de. Comportamento assintótico de problemas de difusão não locais e semilineares do tipo Neumann [Internet]. 2019 ;[citado 2024 nov. 03 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-29072019-184438/
    • Vancouver

      Araujo PN de. Comportamento assintótico de problemas de difusão não locais e semilineares do tipo Neumann [Internet]. 2019 ;[citado 2024 nov. 03 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-29072019-184438/
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: MATEMÁTICA APLICADA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa e ROSSI, Julio D. Nonlocal problems in thin domains. Journal of Differential Equations, v. 263, n. 3, p. 1725-1754, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2017.03.029. Acesso em: 03 nov. 2024.
    • APA

      Pereira, M. C., & Rossi, J. D. (2017). Nonlocal problems in thin domains. Journal of Differential Equations, 263( 3), 1725-1754. doi:10.1016/j.jde.2017.03.029
    • NLM

      Pereira MC, Rossi JD. Nonlocal problems in thin domains [Internet]. Journal of Differential Equations. 2017 ; 263( 3): 1725-1754.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jde.2017.03.029
    • Vancouver

      Pereira MC, Rossi JD. Nonlocal problems in thin domains [Internet]. Journal of Differential Equations. 2017 ; 263( 3): 1725-1754.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jde.2017.03.029
  • Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VERÃO, Glauce Barbosa. Aproximando ondas viajantes por equilíbrios de uma equação não local. 2016. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2016. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-23062017-160214/. Acesso em: 03 nov. 2024.
    • APA

      Verão, G. B. (2016). Aproximando ondas viajantes por equilíbrios de uma equação não local (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-23062017-160214/
    • NLM

      Verão GB. Aproximando ondas viajantes por equilíbrios de uma equação não local [Internet]. 2016 ;[citado 2024 nov. 03 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-23062017-160214/
    • Vancouver

      Verão GB. Aproximando ondas viajantes por equilíbrios de uma equação não local [Internet]. 2016 ;[citado 2024 nov. 03 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-23062017-160214/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024