Filtros : "Interacting particle systems" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, REDES NEURAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRE, Morgan Florian Thibault. Phase transition and metastability in a stochastic system of spiking neurons. 2020. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01032021-124843/. Acesso em: 30 jan. 2026.
    • APA

      Andre, M. F. T. (2020). Phase transition and metastability in a stochastic system of spiking neurons (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01032021-124843/
    • NLM

      Andre MFT. Phase transition and metastability in a stochastic system of spiking neurons [Internet]. 2020 ;[citado 2026 jan. 30 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01032021-124843/
    • Vancouver

      Andre MFT. Phase transition and metastability in a stochastic system of spiking neurons [Internet]. 2020 ;[citado 2026 jan. 30 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01032021-124843/
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: NEURÔNIOS, SINAPSE, ESTATÍSTICA APLICADA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio et al. A system of interacting neurons with short term synaptic facilitation. Journal of Statistical Physics, v. 178, n. 4, p. 869-892, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10955-019-02467-1. Acesso em: 30 jan. 2026.
    • APA

      Galves, A., Löcherbach, E., Pouzat, C., & Presutti, E. (2020). A system of interacting neurons with short term synaptic facilitation. Journal of Statistical Physics, 178( 4), 869-892. doi:10.1007/s10955-019-02467-1
    • NLM

      Galves A, Löcherbach E, Pouzat C, Presutti E. A system of interacting neurons with short term synaptic facilitation [Internet]. Journal of Statistical Physics. 2020 ; 178( 4): 869-892.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1007/s10955-019-02467-1
    • Vancouver

      Galves A, Löcherbach E, Pouzat C, Presutti E. A system of interacting neurons with short term synaptic facilitation [Internet]. Journal of Statistical Physics. 2020 ; 178( 4): 869-892.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1007/s10955-019-02467-1
  • Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, PROCESSOS DE MARKOV, SISTEMAS MARKOVIANOS DE PARTÍCULAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AGUIAR, Guilherme Ost de. Hydrodynamic limit for spatially structured interacting neurons. 2015. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2015. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-01062016-162917/. Acesso em: 30 jan. 2026.
    • APA

      Aguiar, G. O. de. (2015). Hydrodynamic limit for spatially structured interacting neurons (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45133/tde-01062016-162917/
    • NLM

      Aguiar GO de. Hydrodynamic limit for spatially structured interacting neurons [Internet]. 2015 ;[citado 2026 jan. 30 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-01062016-162917/
    • Vancouver

      Aguiar GO de. Hydrodynamic limit for spatially structured interacting neurons [Internet]. 2015 ;[citado 2026 jan. 30 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-01062016-162917/
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e LÖCHERBACH, Eva. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets. Journal of Statistical Physics, v. 151, n. 5, p. 896-921, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10955-013-0733-9. Acesso em: 30 jan. 2026.
    • APA

      Galves, A., & Löcherbach, E. (2013). Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets. Journal of Statistical Physics, 151( 5), 896-921. doi:10.1007/s10955-013-0733-9
    • NLM

      Galves A, Löcherbach E. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets [Internet]. Journal of Statistical Physics. 2013 ; 151( 5): 896-921.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1007/s10955-013-0733-9
    • Vancouver

      Galves A, Löcherbach E. Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets [Internet]. Journal of Statistical Physics. 2013 ; 151( 5): 896-921.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1007/s10955-013-0733-9
  • Source: Annals of Applied Probability. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio et al. Kalikow-type decomposition for multicolor infinite range particle systems. Annals of Applied Probability, v. 23, n. 4, p. 1629-1659, 2013Tradução . . Disponível em: https://doi.org/10.1214/12-AAP882. Acesso em: 30 jan. 2026.
    • APA

      Galves, A., Garcia, N. L., Löcherbach, E., & Orlandi, E. (2013). Kalikow-type decomposition for multicolor infinite range particle systems. Annals of Applied Probability, 23( 4), 1629-1659. doi:10.1214/12-AAP882
    • NLM

      Galves A, Garcia NL, Löcherbach E, Orlandi E. Kalikow-type decomposition for multicolor infinite range particle systems [Internet]. Annals of Applied Probability. 2013 ; 23( 4): 1629-1659.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1214/12-AAP882
    • Vancouver

      Galves A, Garcia NL, Löcherbach E, Orlandi E. Kalikow-type decomposition for multicolor infinite range particle systems [Internet]. Annals of Applied Probability. 2013 ; 23( 4): 1629-1659.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1214/12-AAP882
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e LÖCHERBACH, Eva e ORLANDI, Enza. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations. Journal of Statistical Physics, v. 138, n. 1-3, p. 476-495, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10955-009-9881-3. Acesso em: 30 jan. 2026.
    • APA

      Galves, A., Löcherbach, E., & Orlandi, E. (2010). Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations. Journal of Statistical Physics, 138( 1-3), 476-495. doi:10.1007/s10955-009-9881-3
    • NLM

      Galves A, Löcherbach E, Orlandi E. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations [Internet]. Journal of Statistical Physics. 2010 ; 138( 1-3): 476-495.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1007/s10955-009-9881-3
    • Vancouver

      Galves A, Löcherbach E, Orlandi E. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations [Internet]. Journal of Statistical Physics. 2010 ; 138( 1-3): 476-495.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1007/s10955-009-9881-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026