Filtros : "GEOMETRIA DIFERENCIAL" "2000" "IME-USP" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SEMI-RIEMANNIANA, GEOMETRIA GLOBAL, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo e SEMPALMIERI, Rosella. On the geodesical connectedness for a class of semi-Riemannian manifolds. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Giannoni, F., Piccione, P., & Sempalmieri, R. (2000). On the geodesical connectedness for a class of semi-Riemannian manifolds. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
    • NLM

      Giannoni F, Piccione P, Sempalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
    • Vancouver

      Giannoni F, Piccione P, Sempalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo. Time minimizing trajectories in Lorentzian geometry: the general-relativistic Brachistochrone problem. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/cb2ddcd6-8a5f-4b37-8416-67f5315fd095/1105201.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Piccione, P. (2000). Time minimizing trajectories in Lorentzian geometry: the general-relativistic Brachistochrone problem. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/cb2ddcd6-8a5f-4b37-8416-67f5315fd095/1105201.pdf
    • NLM

      Piccione P. Time minimizing trajectories in Lorentzian geometry: the general-relativistic Brachistochrone problem [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/cb2ddcd6-8a5f-4b37-8416-67f5315fd095/1105201.pdf
    • Vancouver

      Piccione P. Time minimizing trajectories in Lorentzian geometry: the general-relativistic Brachistochrone problem [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/cb2ddcd6-8a5f-4b37-8416-67f5315fd095/1105201.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SUB-RIEMANNIANA, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. Variational aspects of the geodesic problem in sub-Riemannian geometry. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/0520f864-745b-4ad8-ac35-9402b99c972e/1095501.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Piccione, P., & Tausk, D. V. (2000). Variational aspects of the geodesic problem in sub-Riemannian geometry. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/0520f864-745b-4ad8-ac35-9402b99c972e/1095501.pdf
    • NLM

      Piccione P, Tausk DV. Variational aspects of the geodesic problem in sub-Riemannian geometry [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/0520f864-745b-4ad8-ac35-9402b99c972e/1095501.pdf
    • Vancouver

      Piccione P, Tausk DV. Variational aspects of the geodesic problem in sub-Riemannian geometry [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/0520f864-745b-4ad8-ac35-9402b99c972e/1095501.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo. The arrival time brachistochrones in general relativity. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Giannoni, F., & Piccione, P. (2000). The arrival time brachistochrones in general relativity. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
    • NLM

      Giannoni F, Piccione P. The arrival time brachistochrones in general relativity [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
    • Vancouver

      Giannoni F, Piccione P. The arrival time brachistochrones in general relativity [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SUB-RIEMANNIANA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2000). Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
    • NLM

      Giambó R, Giannoni F, Piccione P. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo e TAUSK, Daniel Victor. Morse theory for the travel time brachistochrones in stationary spacetimes. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Giannoni, F., Piccione, P., & Tausk, D. V. (2000). Morse theory for the travel time brachistochrones in stationary spacetimes. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
    • NLM

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
    • Vancouver

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SUB-RIEMANNIANA, GEOMETRIA SIMPLÉTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. Lagrangian and Hamiltonian formalism for constrained variational problems. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/aa37ad80-bdc6-47a0-b150-d2662c4ba0e0/1095509.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Piccione, P., & Tausk, D. V. (2000). Lagrangian and Hamiltonian formalism for constrained variational problems. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/aa37ad80-bdc6-47a0-b150-d2662c4ba0e0/1095509.pdf
    • NLM

      Piccione P, Tausk DV. Lagrangian and Hamiltonian formalism for constrained variational problems [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/aa37ad80-bdc6-47a0-b150-d2662c4ba0e0/1095509.pdf
    • Vancouver

      Piccione P, Tausk DV. Lagrangian and Hamiltonian formalism for constrained variational problems [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/aa37ad80-bdc6-47a0-b150-d2662c4ba0e0/1095509.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA, GRUPOS DE LIE, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio et al. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Giannoni, F., Masiello, A., Piccione, P., & Tausk, D. V. (2000). A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
    • NLM

      Giannoni F, Masiello A, Piccione P, Tausk DV. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
    • Vancouver

      Giannoni F, Masiello A, Piccione P, Tausk DV. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS, GEOMETRIA GLOBAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. The Maslov index and a generalized Morse index theorem for non positive definite metrics. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/cc803f9e-8c95-4d1e-ae57-9a13426e14ce/1105206.pdf. Acesso em: 11 nov. 2024. , 2000
    • APA

      Piccione, P., & Tausk, D. V. (2000). The Maslov index and a generalized Morse index theorem for non positive definite metrics. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/cc803f9e-8c95-4d1e-ae57-9a13426e14ce/1105206.pdf
    • NLM

      Piccione P, Tausk DV. The Maslov index and a generalized Morse index theorem for non positive definite metrics [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/cc803f9e-8c95-4d1e-ae57-9a13426e14ce/1105206.pdf
    • Vancouver

      Piccione P, Tausk DV. The Maslov index and a generalized Morse index theorem for non positive definite metrics [Internet]. 2000 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/cc803f9e-8c95-4d1e-ae57-9a13426e14ce/1105206.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024