Filtros : "Indexado no MathSciNet" "Colômbia" Removidos: "Instituto Butantan (IB)" "Oliveira, Alexandre Adalardo" "msu" "Sociedade Brasileira de Fisica" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 19 nov. 2024.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEOREMA DO PONTO FIXO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e GRAU, Rogelio e MACENA, Maria Carolina Stefani Mesquita. Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 725-760, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.027. Acesso em: 19 nov. 2024.
    • APA

      Federson, M., Grau, R., & Macena, M. C. S. M. (2022). Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, 60( 2), 725-760. doi:10.12775/TMNA.2022.027
    • NLM

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/TMNA.2022.027
    • Vancouver

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/TMNA.2022.027
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA TOPOLÓGICA, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da et al. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, v. 286, p. 1-46, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.02.060. Acesso em: 19 nov. 2024.
    • APA

      Silva, F. A. da, Federson, M., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060
    • NLM

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
    • Vancouver

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
  • Source: IEEE Transactions on Automatic Control. Unidade: ICMC

    Subjects: SISTEMAS LINEARES, CADEIAS DE MARKOV, PROGRAMAÇÃO DINÂMICA, PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NARVÁEZ, Alfredo Rafael Roa e COSTA, Eduardo Fontoura. Control of continuous-time linear systems with Markov jump parameters in reverse time. IEEE Transactions on Automatic Control, v. 65, n. 5, p. 2265 - 2271, 2020Tradução . . Disponível em: https://doi.org/10.1109/TAC.2019.2944919. Acesso em: 19 nov. 2024.
    • APA

      Narváez, A. R. R., & Costa, E. F. (2020). Control of continuous-time linear systems with Markov jump parameters in reverse time. IEEE Transactions on Automatic Control, 65( 5), 2265 - 2271. doi:10.1109/TAC.2019.2944919
    • NLM

      Narváez ARR, Costa EF. Control of continuous-time linear systems with Markov jump parameters in reverse time [Internet]. IEEE Transactions on Automatic Control. 2020 ; 65( 5): 2265 - 2271.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1109/TAC.2019.2944919
    • Vancouver

      Narváez ARR, Costa EF. Control of continuous-time linear systems with Markov jump parameters in reverse time [Internet]. IEEE Transactions on Automatic Control. 2020 ; 65( 5): 2265 - 2271.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1109/TAC.2019.2944919
  • Source: Physica A. Unidade: INTER: ICMC -UFSCAR

    Subjects: PROCESSOS DE MARKOV, MODELOS MATEMÁTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIMENTEL, Carlos Eduardo Hirth e RODRÍGUEZ, Pablo Martín e VALENCIA, Leon Alexander. A note on a stage-specific predator-prey stochastic model. Physica A, v. 553, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.physa.2020.124575. Acesso em: 19 nov. 2024.
    • APA

      Pimentel, C. E. H., Rodríguez, P. M., & Valencia, L. A. (2020). A note on a stage-specific predator-prey stochastic model. Physica A, 553, Se 2020. doi:10.1016/j.physa.2020.124575
    • NLM

      Pimentel CEH, Rodríguez PM, Valencia LA. A note on a stage-specific predator-prey stochastic model [Internet]. Physica A. 2020 ; 553 Se 2020.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.physa.2020.124575
    • Vancouver

      Pimentel CEH, Rodríguez PM, Valencia LA. A note on a stage-specific predator-prey stochastic model [Internet]. Physica A. 2020 ; 553 Se 2020.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.physa.2020.124575
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA CONJUNTÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERCADO, Henry Jose Gullo e AURICHI, Leandro Fiorini. Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, v. No 2019, p. 1-11, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.106891. Acesso em: 19 nov. 2024.
    • APA

      Mercado, H. J. G., & Aurichi, L. F. (2019). Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, No 2019, 1-11. doi:10.1016/j.topol.2019.106891
    • NLM

      Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.topol.2019.106891
    • Vancouver

      Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.topol.2019.106891
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: MEDIDA E INTEGRAÇÃO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e GRAU, R e MESQUITA, Jaqueline Godoy. Prolongation of solutions of measure differential equations and dynamic equations on time scales. Mathematische Nachrichten, v. 292, n. Ja 2019, p. 22-55, 2019Tradução . . Disponível em: https://doi.org/10.1002/mana.201700420. Acesso em: 19 nov. 2024.
    • APA

      Federson, M., Grau, R., & Mesquita, J. G. (2019). Prolongation of solutions of measure differential equations and dynamic equations on time scales. Mathematische Nachrichten, 292( Ja 2019), 22-55. doi:10.1002/mana.201700420
    • NLM

      Federson M, Grau R, Mesquita JG. Prolongation of solutions of measure differential equations and dynamic equations on time scales [Internet]. Mathematische Nachrichten. 2019 ; 292( Ja 2019): 22-55.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1002/mana.201700420
    • Vancouver

      Federson M, Grau R, Mesquita JG. Prolongation of solutions of measure differential equations and dynamic equations on time scales [Internet]. Mathematische Nachrichten. 2019 ; 292( Ja 2019): 22-55.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1002/mana.201700420
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE LIAPUNOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Lyapunov stability for measure differential equations and dynamic equations on time scales. Journal of Differential Equations, v. 267, n. 7, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2019.04.035. Acesso em: 19 nov. 2024.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2019). Lyapunov stability for measure differential equations and dynamic equations on time scales. Journal of Differential Equations, 267( 7), Se 2019. doi:10.1016/j.jde.2019.04.035
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Lyapunov stability for measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2019 ; 267( 7): Se 2019.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jde.2019.04.035
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Lyapunov stability for measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2019 ; 267( 7): Se 2019.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jde.2019.04.035
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo et al. The regularized Boussinesq equation: instability of periodic traveling waves. Journal of Differential Equations, v. 254, n. 9, p. 3994-4023, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2013.01.034. Acesso em: 19 nov. 2024.
    • APA

      Pava, J. A., Banquet, C., Silva, J. D., & Oliveira, F. (2013). The regularized Boussinesq equation: instability of periodic traveling waves. Journal of Differential Equations, 254( 9), 3994-4023. doi:10.1016/j.jde.2013.01.034
    • NLM

      Pava JA, Banquet C, Silva JD, Oliveira F. The regularized Boussinesq equation: instability of periodic traveling waves [Internet]. Journal of Differential Equations. 2013 ; 254( 9): 3994-4023.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jde.2013.01.034
    • Vancouver

      Pava JA, Banquet C, Silva JD, Oliveira F. The regularized Boussinesq equation: instability of periodic traveling waves [Internet]. Journal of Differential Equations. 2013 ; 254( 9): 3994-4023.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jde.2013.01.034
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTILLO GÓMEZ , John H e POLCINO MILIES, Francisco César. Lie properties of symmetric elements under oriented involutions. Communications in Algebra, n. 12, p. 4404-4419, 2012Tradução . . Disponível em: https://doi.org/10.1080/00927872.2011.602165. Acesso em: 19 nov. 2024.
    • APA

      Castillo Gómez , J. H., & Polcino Milies, F. C. (2012). Lie properties of symmetric elements under oriented involutions. Communications in Algebra, ( 12), 4404-4419. doi:10.1080/00927872.2011.602165
    • NLM

      Castillo Gómez JH, Polcino Milies FC. Lie properties of symmetric elements under oriented involutions [Internet]. Communications in Algebra. 2012 ;( 12): 4404-4419.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1080/00927872.2011.602165
    • Vancouver

      Castillo Gómez JH, Polcino Milies FC. Lie properties of symmetric elements under oriented involutions [Internet]. Communications in Algebra. 2012 ;( 12): 4404-4419.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1080/00927872.2011.602165

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024