Maximal topologies with respect to a family of discrete subsets (2019)
- Authors:
- Autor USP: AURICHI, LEANDRO FIORINI - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.topol.2019.106891
- Assunto: TOPOLOGIA CONJUNTÍSTICA
- Keywords: Maximal topologies; Families of subsets; Topological properties; Set-theoretic properties; Discrete subsets
- Language: Inglês
- Imprenta:
- Source:
- Título: Topology and its Applications
- ISSN: 0166-8641
- Volume/Número/Paginação/Ano: v. 267, p. 1-11, Nov. 2019
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MERCADO, Henry Jose Gullo e AURICHI, Leandro Fiorini. Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, v. No 2019, p. 1-11, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.106891. Acesso em: 21 fev. 2026. -
APA
Mercado, H. J. G., & Aurichi, L. F. (2019). Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, No 2019, 1-11. doi:10.1016/j.topol.2019.106891 -
NLM
Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1016/j.topol.2019.106891 -
Vancouver
Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1016/j.topol.2019.106891 - When is a space Menger at infinity?
- Relations between a topological game and the 'G IND. 'delta''-diagonal property
- Selectively c.c.c. spaces
- A minicourse on topological games
- Productively countably tight spaces of the form 'C IND. K'(X)
- D-spaces, separation axioms and covering properties
- Topological games and Alster spaces
- Bornologies and filters applied to selection principles and function spaces
- D-spaces, topological games, and selection principles
- Tightness games with bounded finite selections
Informações sobre o DOI: 10.1016/j.topol.2019.106891 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
