Productively countably tight spaces of the form 'C IND. K'(X) (2016)
- Authors:
- Autor USP: AURICHI, LEANDRO FIORINI - ICMC
- Unidade: ICMC
- Assunto: TOPOLOGIA
- Keywords: topological games; selection principles; productively countably tightness; Alster spaces; 'G IND. 'delta''-topology; bornology
- Language: Inglês
- Imprenta:
- Source:
- Título: Houston Journal of Mathematics
- ISSN: 0362-1588
- Volume/Número/Paginação/Ano: v. 42, n. 3, p. 1019-1029, 2016
-
ABNT
AURICHI, Leandro Fiorini e MEZABARBA, Renan M. Productively countably tight spaces of the form 'C IND. K'(X). Houston Journal of Mathematics, v. 42, n. 3, p. 1019-1029, 2016Tradução . . Acesso em: 09 nov. 2024. -
APA
Aurichi, L. F., & Mezabarba, R. M. (2016). Productively countably tight spaces of the form 'C IND. K'(X). Houston Journal of Mathematics, 42( 3), 1019-1029. -
NLM
Aurichi LF, Mezabarba RM. Productively countably tight spaces of the form 'C IND. K'(X). Houston Journal of Mathematics. 2016 ; 42( 3): 1019-1029.[citado 2024 nov. 09 ] -
Vancouver
Aurichi LF, Mezabarba RM. Productively countably tight spaces of the form 'C IND. K'(X). Houston Journal of Mathematics. 2016 ; 42( 3): 1019-1029.[citado 2024 nov. 09 ] - Selective versions of chain condition-type properties
- Relations between a topological game and the 'G IND. 'delta''-diagonal property
- Maximal topologies with respect to a family of discrete subsets
- D-spaces, separation axioms and covering properties
- Topological games and Alster spaces
- When is a space Menger at infinity?
- Internal characterizations of productively Lindelöf spaces
- Bornologies and filters applied to selection principles and function spaces
- D-spaces, topological games, and selection principles
- Cardinal estimates involving the weak Lindelöf game
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas