When is a space Menger at infinity? (2015)
- Authors:
- Autor USP: AURICHI, LEANDRO FIORINI - ICMC
- Unidade: ICMC
- DOI: 10.4995/agt.2015.3244
- Assunto: TOPOLOGIA
- Language: Inglês
- Imprenta:
- Source:
- Título: Applied General Topology
- ISSN: 1576-9402
- Volume/Número/Paginação/Ano: v. 16, n. 1, p. 75-80, 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
AURICHI, Leandro Fiorini e BELLA, Angelo. When is a space Menger at infinity?. Applied General Topology, v. 16, n. 1, p. 75-80, 2015Tradução . . Disponível em: https://doi.org/10.4995/agt.2015.3244. Acesso em: 21 fev. 2026. -
APA
Aurichi, L. F., & Bella, A. (2015). When is a space Menger at infinity? Applied General Topology, 16( 1), 75-80. doi:10.4995/agt.2015.3244 -
NLM
Aurichi LF, Bella A. When is a space Menger at infinity? [Internet]. Applied General Topology. 2015 ; 16( 1): 75-80.[citado 2026 fev. 21 ] Available from: https://doi.org/10.4995/agt.2015.3244 -
Vancouver
Aurichi LF, Bella A. When is a space Menger at infinity? [Internet]. Applied General Topology. 2015 ; 16( 1): 75-80.[citado 2026 fev. 21 ] Available from: https://doi.org/10.4995/agt.2015.3244 - Relations between a topological game and the 'G IND. 'delta''-diagonal property
- Selectively c.c.c. spaces
- A minicourse on topological games
- Maximal topologies with respect to a family of discrete subsets
- Productively countably tight spaces of the form 'C IND. K'(X)
- D-spaces, separation axioms and covering properties
- Topological games and Alster spaces
- Bornologies and filters applied to selection principles and function spaces
- D-spaces, topological games, and selection principles
- Tightness games with bounded finite selections
Informações sobre o DOI: 10.4995/agt.2015.3244 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
