Filtros : "Indexado na Web of Science" "IME-MAT" Removido: "BALOGH, DEBORA TEREZIA" Limpar

Filtros



Refine with date range


  • Source: Mathematische Nachrichten. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORTES, Vinícius Morelli e GALEGO, Elói Medina e SAMUEL, Christian. When is c0(τ) complemented in tensor products of ℓp(I)?. Mathematische Nachrichten, v. 292, n. 5, p. 1089-1105, 2019Tradução . . Disponível em: https://doi.org/10.1002/mana.201700348. Acesso em: 05 nov. 2024.
    • APA

      Cortes, V. M., Galego, E. M., & Samuel, C. (2019). When is c0(τ) complemented in tensor products of ℓp(I)? Mathematische Nachrichten, 292( 5), 1089-1105. doi:10.1002/mana.201700348
    • NLM

      Cortes VM, Galego EM, Samuel C. When is c0(τ) complemented in tensor products of ℓp(I)? [Internet]. Mathematische Nachrichten. 2019 ; 292( 5): 1089-1105.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1002/mana.201700348
    • Vancouver

      Cortes VM, Galego EM, Samuel C. When is c0(τ) complemented in tensor products of ℓp(I)? [Internet]. Mathematische Nachrichten. 2019 ; 292( 5): 1089-1105.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1002/mana.201700348
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: TEORIA DOS ANÉIS, ÁLGEBRA HOMOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento et al. Wide subcategories of finitely generated Λ-modules. Journal of Algebra and Its Applications, v. 17, n. 5 , p. 1850082-1-1850082-15, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219498818500822. Acesso em: 05 nov. 2024.
    • APA

      Marcos, E. do N., Mendoza, O., Sáenz, C., & Santiago, V. (2018). Wide subcategories of finitely generated Λ-modules. Journal of Algebra and Its Applications, 17( 5 ), 1850082-1-1850082-15. doi:10.1142/S0219498818500822
    • NLM

      Marcos E do N, Mendoza O, Sáenz C, Santiago V. Wide subcategories of finitely generated Λ-modules [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 5 ): 1850082-1-1850082-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498818500822
    • Vancouver

      Marcos E do N, Mendoza O, Sáenz C, Santiago V. Wide subcategories of finitely generated Λ-modules [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 5 ): 1850082-1-1850082-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498818500822
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e SOLOTAR, Andrea e VOLKOV, Yury. Generating degrees for graded projective resolutions. Journal of Algebra and Its Applications, v. 17, n. 10, p. 1-15, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219498818501918. Acesso em: 05 nov. 2024.
    • APA

      Marcos, E. do N., Solotar, A., & Volkov, Y. (2018). Generating degrees for graded projective resolutions. Journal of Algebra and Its Applications, 17( 10), 1-15. doi:10.1142/S0219498818501918
    • NLM

      Marcos E do N, Solotar A, Volkov Y. Generating degrees for graded projective resolutions [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 10): 1-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498818501918
    • Vancouver

      Marcos E do N, Solotar A, Volkov Y. Generating degrees for graded projective resolutions [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 10): 1-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498818501918
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, FAMÍLIAS (GEOMETRIA ALGÉBRICA), DIMENSÃO INFINITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e MARTIN, María Eugenia. Geometric classification of nilpotent Jordan algebras of dimension five. Journal of Pure and Applied Algebra, v. 222, n. 3, p. 546-559, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2017.04.018. Acesso em: 05 nov. 2024.
    • APA

      Kashuba, I., & Martin, M. E. (2018). Geometric classification of nilpotent Jordan algebras of dimension five. Journal of Pure and Applied Algebra, 222( 3), 546-559. doi:10.1016/j.jpaa.2017.04.018
    • NLM

      Kashuba I, Martin ME. Geometric classification of nilpotent Jordan algebras of dimension five [Internet]. Journal of Pure and Applied Algebra. 2018 ; 222( 3): 546-559.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jpaa.2017.04.018
    • Vancouver

      Kashuba I, Martin ME. Geometric classification of nilpotent Jordan algebras of dimension five [Internet]. Journal of Pure and Applied Algebra. 2018 ; 222( 3): 546-559.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jpaa.2017.04.018
  • Source: Transformation Groups. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZUBKOV, A. N e SHESTAKOV, Ivan P. Invariants of G2 and spin(7) in positive characteristic. Transformation Groups, v. 23, n. 2, p. 555–588, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00031-017-9435-8. Acesso em: 05 nov. 2024.
    • APA

      Zubkov, A. N., & Shestakov, I. P. (2018). Invariants of G2 and spin(7) in positive characteristic. Transformation Groups, 23( 2), 555–588. doi:10.1007/s00031-017-9435-8
    • NLM

      Zubkov AN, Shestakov IP. Invariants of G2 and spin(7) in positive characteristic [Internet]. Transformation Groups. 2018 ; 23( 2): 555–588.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00031-017-9435-8
    • Vancouver

      Zubkov AN, Shestakov IP. Invariants of G2 and spin(7) in positive characteristic [Internet]. Transformation Groups. 2018 ; 23( 2): 555–588.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00031-017-9435-8
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e FORNAROLI, Erica Z e GONÇALVES, Jairo Zacarias. Free algebras in division rings with an involution. Journal of Algebra, v. 509, p. 292-306, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2018.01.025. Acesso em: 05 nov. 2024.
    • APA

      Ferreira, V. de O., Fornaroli, E. Z., & Gonçalves, J. Z. (2018). Free algebras in division rings with an involution. Journal of Algebra, 509, 292-306. doi:10.1016/j.jalgebra.2018.01.025
    • NLM

      Ferreira V de O, Fornaroli EZ, Gonçalves JZ. Free algebras in division rings with an involution [Internet]. Journal of Algebra. 2018 ; 509 292-306.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2018.01.025
    • Vancouver

      Ferreira V de O, Fornaroli EZ, Gonçalves JZ. Free algebras in division rings with an involution [Internet]. Journal of Algebra. 2018 ; 509 292-306.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2018.01.025
  • Source: Indiana University Mathematics Journal. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e ARDILA, Alex Hernandez. Stability of standing waves for logarithmic Schrodinger equation with attractive delta potential. Indiana University Mathematics Journal, v. 67, n. 2, p. 471-494, 2018Tradução . . Disponível em: https://doi.org/10.1512/iumj.2018.67.7273. Acesso em: 05 nov. 2024.
    • APA

      Pava, J. A., & Ardila, A. H. (2018). Stability of standing waves for logarithmic Schrodinger equation with attractive delta potential. Indiana University Mathematics Journal, 67( 2), 471-494. doi:10.1512/iumj.2018.67.7273
    • NLM

      Pava JA, Ardila AH. Stability of standing waves for logarithmic Schrodinger equation with attractive delta potential [Internet]. Indiana University Mathematics Journal. 2018 ; 67( 2): 471-494.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1512/iumj.2018.67.7273
    • Vancouver

      Pava JA, Ardila AH. Stability of standing waves for logarithmic Schrodinger equation with attractive delta potential [Internet]. Indiana University Mathematics Journal. 2018 ; 67( 2): 471-494.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1512/iumj.2018.67.7273
  • Source: Journal of Symplectic Geometry. Unidade: IME

    Assunto: GRUPOS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABRERA, Alejandro e BRAHIC, Olivier e ORTIZ, Cristian. Obstructions to the integrability of VB-algebroids. Journal of Symplectic Geometry, v. 16, n. 2, p. 439-483, 2018Tradução . . Disponível em: https://doi.org/10.4310/JSG.2018.v16.n2.a3. Acesso em: 05 nov. 2024.
    • APA

      Cabrera, A., Brahic, O., & Ortiz, C. (2018). Obstructions to the integrability of VB-algebroids. Journal of Symplectic Geometry, 16( 2), 439-483. doi:10.4310/JSG.2018.v16.n2.a3
    • NLM

      Cabrera A, Brahic O, Ortiz C. Obstructions to the integrability of VB-algebroids [Internet]. Journal of Symplectic Geometry. 2018 ; 16( 2): 439-483.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4310/JSG.2018.v16.n2.a3
    • Vancouver

      Cabrera A, Brahic O, Ortiz C. Obstructions to the integrability of VB-algebroids [Internet]. Journal of Symplectic Geometry. 2018 ; 16( 2): 439-483.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4310/JSG.2018.v16.n2.a3
  • Source: Indagationes Mathematicae. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach. Indagationes Mathematicae, v. 29, n. 1, p. 91-124, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.indag.2017.03.003. Acesso em: 05 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2018). Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach. Indagationes Mathematicae, 29( 1), 91-124. doi:10.1016/j.indag.2017.03.003
    • NLM

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach [Internet]. Indagationes Mathematicae. 2018 ; 29( 1): 91-124.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.indag.2017.03.003
    • Vancouver

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach [Internet]. Indagationes Mathematicae. 2018 ; 29( 1): 91-124.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.indag.2017.03.003
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUINTERO VANEGAS, E. O e FERNÁNDEZ, Juan Carlos Gutiérrez. Power associative nilalgebras of dimension 9. Journal of Algebra, v. 495, p. 233-263, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.10.017. Acesso em: 05 nov. 2024.
    • APA

      Quintero Vanegas, E. O., & Fernández, J. C. G. (2018). Power associative nilalgebras of dimension 9. Journal of Algebra, 495, 233-263. doi:10.1016/j.jalgebra.2017.10.017
    • NLM

      Quintero Vanegas EO, Fernández JCG. Power associative nilalgebras of dimension 9 [Internet]. Journal of Algebra. 2018 ; 495 233-263.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.10.017
    • Vancouver

      Quintero Vanegas EO, Fernández JCG. Power associative nilalgebras of dimension 9 [Internet]. Journal of Algebra. 2018 ; 495 233-263.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.10.017
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, V e BEKKERT, V e FUTORNY, Vyacheslav. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators. Proceedings of the American Mathematical Society, v. 146, n. 6, p. 2373-2380, 2018Tradução . . Disponível em: https://doi.org/10.1090/proc/13985. Acesso em: 05 nov. 2024.
    • APA

      Bavula, V., Bekkert, V., & Futorny, V. (2018). Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators. Proceedings of the American Mathematical Society, 146( 6), 2373-2380. doi:10.1090/proc/13985
    • NLM

      Bavula V, Bekkert V, Futorny V. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 6): 2373-2380.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/proc/13985
    • Vancouver

      Bavula V, Bekkert V, Futorny V. Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 6): 2373-2380.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/proc/13985
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KORNEV, A. I e SHESTAKOV, Ivan P. On associative representations of non-associative algebras. Journal of Algebra and Its Applications, v. 17, n. 3, p. 1850051-18500512, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219498818500512. Acesso em: 05 nov. 2024.
    • APA

      Kornev, A. I., & Shestakov, I. P. (2018). On associative representations of non-associative algebras. Journal of Algebra and Its Applications, 17( 3), 1850051-18500512. doi:10.1142/S0219498818500512
    • NLM

      Kornev AI, Shestakov IP. On associative representations of non-associative algebras [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 3): 1850051-18500512.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498818500512
    • Vancouver

      Kornev AI, Shestakov IP. On associative representations of non-associative algebras [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 3): 1850051-18500512.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498818500512
  • Source: Journal of Algebra. Unidade: IME

    Assunto: REPRESENTAÇÕES DE GRUPOS ALGÉBRICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KASHUBA, Iryna. Structure of parabolically induced modules for affine Kac-Moody algebras. Journal of Algebra, v. 500, p. 362-374, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.03.007. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., & Kashuba, I. (2018). Structure of parabolically induced modules for affine Kac-Moody algebras. Journal of Algebra, 500, 362-374. doi:10.1016/j.jalgebra.2017.03.007
    • NLM

      Futorny V, Kashuba I. Structure of parabolically induced modules for affine Kac-Moody algebras [Internet]. Journal of Algebra. 2018 ; 500 362-374.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.03.007
    • Vancouver

      Futorny V, Kashuba I. Structure of parabolically induced modules for affine Kac-Moody algebras [Internet]. Journal of Algebra. 2018 ; 500 362-374.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.03.007
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE VON NEUMANN, GRUPOS ORDENADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁNCHEZ, Javier. Obtaining free group algebras in division rings generated by group graded rings. Journal of Algebra and Its Applications, v. 17, n. 10, p. 1850194-1-1850194-12, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219498818501943. Acesso em: 05 nov. 2024.
    • APA

      Sánchez, J. (2018). Obtaining free group algebras in division rings generated by group graded rings. Journal of Algebra and Its Applications, 17( 10), 1850194-1-1850194-12. doi:10.1142/S0219498818501943
    • NLM

      Sánchez J. Obtaining free group algebras in division rings generated by group graded rings [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 10): 1850194-1-1850194-12.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498818501943
    • Vancouver

      Sánchez J. Obtaining free group algebras in division rings generated by group graded rings [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 10): 1850194-1-1850194-12.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498818501943
  • Source: Journal of Graph Theory. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e KONSTADINIDIS, Pavlos Bahia e MOTA, Guilherme Oliveira. On an anti-Ramsey threshold for sparse graphs with one triangle. Journal of Graph Theory, v. 87, n. 2, p. 176-187, 2018Tradução . . Disponível em: https://doi.org/10.1002/jgt.22150. Acesso em: 05 nov. 2024.
    • APA

      Kohayakawa, Y., Konstadinidis, P. B., & Mota, G. O. (2018). On an anti-Ramsey threshold for sparse graphs with one triangle. Journal of Graph Theory, 87( 2), 176-187. doi:10.1002/jgt.22150
    • NLM

      Kohayakawa Y, Konstadinidis PB, Mota GO. On an anti-Ramsey threshold for sparse graphs with one triangle [Internet]. Journal of Graph Theory. 2018 ; 87( 2): 176-187.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1002/jgt.22150
    • Vancouver

      Kohayakawa Y, Konstadinidis PB, Mota GO. On an anti-Ramsey threshold for sparse graphs with one triangle [Internet]. Journal of Graph Theory. 2018 ; 87( 2): 176-187.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1002/jgt.22150
  • Source: Annales de l’institut Fourier. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DIFERENCIAL, TEORIA DA BIFURCAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOISO, Miyuki e PICCIONE, Paolo e SHODA, Toshihiro. On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, v. 68 n. 6, p. 2743-2778, 2018Tradução . . Disponível em: https://doi.org/10.5802/aif.3222. Acesso em: 05 nov. 2024.
    • APA

      Koiso, M., Piccione, P., & Shoda, T. (2018). On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, 68 n. 6, 2743-2778. doi:10.5802/aif.3222
    • NLM

      Koiso M, Piccione P, Shoda T. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.[citado 2024 nov. 05 ] Available from: https://doi.org/10.5802/aif.3222
    • Vancouver

      Koiso M, Piccione P, Shoda T. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.[citado 2024 nov. 05 ] Available from: https://doi.org/10.5802/aif.3222
  • Source: Inventiones mathematicae. Unidade: IME

    Assunto: GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABBONDANDOLO, Alberto et al. Sharp systolic inequalities for Reeb flows on the three-sphere. Inventiones mathematicae, v. 211, n. 2, p. 687-778, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00222-017-0755-z. Acesso em: 05 nov. 2024.
    • APA

      Abbondandolo, A., Bramham, B., Hryniewicz, U. L., & Salomão, P. A. S. (2018). Sharp systolic inequalities for Reeb flows on the three-sphere. Inventiones mathematicae, 211( 2), 687-778. doi:10.1007/s00222-017-0755-z
    • NLM

      Abbondandolo A, Bramham B, Hryniewicz UL, Salomão PAS. Sharp systolic inequalities for Reeb flows on the three-sphere [Internet]. Inventiones mathematicae. 2018 ; 211( 2): 687-778.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00222-017-0755-z
    • Vancouver

      Abbondandolo A, Bramham B, Hryniewicz UL, Salomão PAS. Sharp systolic inequalities for Reeb flows on the three-sphere [Internet]. Inventiones mathematicae. 2018 ; 211( 2): 687-778.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00222-017-0755-z
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly e FUTORNY, Vyacheslav. Classification of simple cuspidal modules for solenoidal Lie algebras. Israel Journal of Mathematics, v. 222, n. 1, p. 109-123, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11856-017-1584-x. Acesso em: 05 nov. 2024.
    • APA

      Billig, Y., & Futorny, V. (2017). Classification of simple cuspidal modules for solenoidal Lie algebras. Israel Journal of Mathematics, 222( 1), 109-123. doi:10.1007/s11856-017-1584-x
    • NLM

      Billig Y, Futorny V. Classification of simple cuspidal modules for solenoidal Lie algebras [Internet]. Israel Journal of Mathematics. 2017 ; 222( 1): 109-123.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s11856-017-1584-x
    • Vancouver

      Billig Y, Futorny V. Classification of simple cuspidal modules for solenoidal Lie algebras [Internet]. Israel Journal of Mathematics. 2017 ; 222( 1): 109-123.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s11856-017-1584-x
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ÁLGEBRAS LIVRES, POLINÔMIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PCHELINTSEV, Sergey V e SHESTAKOV, Ivan P. Constants of partial derivations and primitive operations. Algebra and Logic, v. 56, n. 3, p. 210-231, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10469-017-9441-x. Acesso em: 05 nov. 2024.
    • APA

      Pchelintsev, S. V., & Shestakov, I. P. (2017). Constants of partial derivations and primitive operations. Algebra and Logic, 56( 3), 210-231. doi:10.1007/s10469-017-9441-x
    • NLM

      Pchelintsev SV, Shestakov IP. Constants of partial derivations and primitive operations [Internet]. Algebra and Logic. 2017 ; 56( 3): 210-231.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10469-017-9441-x
    • Vancouver

      Pchelintsev SV, Shestakov IP. Constants of partial derivations and primitive operations [Internet]. Algebra and Logic. 2017 ; 56( 3): 210-231.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10469-017-9441-x
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESHMATOV, Farkhod et al. Noncommutative Noether’s problem for complex reflection groups. Proceedings of the American Mathematical Society, v. 145, n. 12, p. 5043-5052, 2017Tradução . . Disponível em: https://doi.org/10.1090/proc/13646. Acesso em: 05 nov. 2024.
    • APA

      Eshmatov, F., Futorny, V., Ovsienko, S., & Schwarz, J. F. (2017). Noncommutative Noether’s problem for complex reflection groups. Proceedings of the American Mathematical Society, 145( 12), 5043-5052. doi:10.1090/proc/13646
    • NLM

      Eshmatov F, Futorny V, Ovsienko S, Schwarz JF. Noncommutative Noether’s problem for complex reflection groups [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 12): 5043-5052.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/proc/13646
    • Vancouver

      Eshmatov F, Futorny V, Ovsienko S, Schwarz JF. Noncommutative Noether’s problem for complex reflection groups [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 12): 5043-5052.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/proc/13646

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024