Filtros : "SENSOR" "Índia" Removidos: " IFSC224" "Departamento de Estatística. Universidade Federal de Pernambuco. Recife, PE" "SBF" Limpar

Filtros



Refine with date range


  • Source: Machine learning for advanced functional materials. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai e KUSHVAHA, Vinod e MADHUSHRI, Priyanka. Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 02 nov. 2024. , 2023
    • APA

      Joshi, N. K. J., Kushvaha, V., & Madhushri, P. (2023). Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Machine learning for advanced functional materials. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 02 nov. 2024. , 2023
    • APA

      Machine learning for advanced functional materials. (2023). Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Coordination Chemistry Reviews. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, QUALIDADE DO AR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu e JOSHI, Nirav Kumar Jitendrabhai e TOMER, Vijay kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material. Coordination Chemistry Reviews, v. 466, n. 13, p. 214611-1-214611-43, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ccr.2022.214611. Acesso em: 02 nov. 2024.
    • APA

      Malik, R., Joshi, N. K. J., & Tomer, V. kumar. (2022). Functional graphitic carbon (IV) nitride: a versatile sensing material. Coordination Chemistry Reviews, 466( 13), 214611-1-214611-43. doi:10.1016/j.ccr.2022.214611
    • NLM

      Malik R, Joshi NKJ, Tomer V kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material [Internet]. Coordination Chemistry Reviews. 2022 ; 466( 13): 214611-1-214611-43.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.ccr.2022.214611
    • Vancouver

      Malik R, Joshi NKJ, Tomer V kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material [Internet]. Coordination Chemistry Reviews. 2022 ; 466( 13): 214611-1-214611-43.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.ccr.2022.214611
  • Source: New Journal of Chemistry. Unidade: IFSC

    Subjects: ZINCO, BAIXA TEMPERATURA, SENSOR, FILMES FINOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai et al. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection. New Journal of Chemistry, v. 46, n. 37, p. 17967-17976 + supplementary information, 2022Tradução . . Disponível em: https://doi.org/10.1039/D2NJ02709G. Acesso em: 02 nov. 2024.
    • APA

      Joshi, N. K. J., Long, H., Naik, P., Kumar, A., Mastelaro, V. R., Oliveira Junior, O. N. de, et al. (2022). Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection. New Journal of Chemistry, 46( 37), 17967-17976 + supplementary information. doi:10.1039/D2NJ02709G
    • NLM

      Joshi NKJ, Long H, Naik P, Kumar A, Mastelaro VR, Oliveira Junior ON de, Zettl A, Lin L. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection [Internet]. New Journal of Chemistry. 2022 ; 46( 37): 17967-17976 + supplementary information.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1039/D2NJ02709G
    • Vancouver

      Joshi NKJ, Long H, Naik P, Kumar A, Mastelaro VR, Oliveira Junior ON de, Zettl A, Lin L. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection [Internet]. New Journal of Chemistry. 2022 ; 46( 37): 17967-17976 + supplementary information.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1039/D2NJ02709G
  • Source: Advances in Agronomy. Unidade: CENA

    Subjects: ESPECTROMETRIA, RAIOS X, SENSOR, SOLO TROPICAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Sérgio Henrique Godinho et al. pXRF in tropical soils: methodology, applications, achievements and challenges. Advances in Agronomy, 2021Tradução . . Disponível em: https://doi.org/10.1016/bs.agron.2020.12.001. Acesso em: 02 nov. 2024.
    • APA

      Silva, S. H. G., Ribeiro, B. T., Guerra, M. B. B., Carvalho, H. W. P. de, Lopes, G., Carvalho, G. S., et al. (2021). pXRF in tropical soils: methodology, applications, achievements and challenges. Advances in Agronomy. doi:10.1016/bs.agron.2020.12.001
    • NLM

      Silva SHG, Ribeiro BT, Guerra MBB, Carvalho HWP de, Lopes G, Carvalho GS, Guilherme LRG, Resende M, Mancini M, Curi N, Rafael RBA, Cardelli V, Cocco S, Cortie G, Chakraborty S, Li B, Weindorf DC. pXRF in tropical soils: methodology, applications, achievements and challenges [Internet]. Advances in Agronomy. 2021 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/bs.agron.2020.12.001
    • Vancouver

      Silva SHG, Ribeiro BT, Guerra MBB, Carvalho HWP de, Lopes G, Carvalho GS, Guilherme LRG, Resende M, Mancini M, Curi N, Rafael RBA, Cardelli V, Cocco S, Cortie G, Chakraborty S, Li B, Weindorf DC. pXRF in tropical soils: methodology, applications, achievements and challenges [Internet]. Advances in Agronomy. 2021 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/bs.agron.2020.12.001
  • Source: Materials Advances. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, QUALIDADE DO AR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu e JOSHI, Nirav Kumar Jitendrabhai e TOMER, Vijay kumar. Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review. Materials Advances, v. 2, n. 13, p. 4190-4227, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1ma00374g. Acesso em: 02 nov. 2024.
    • APA

      Malik, R., Joshi, N. K. J., & Tomer, V. kumar. (2021). Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review. Materials Advances, 2( 13), 4190-4227. doi:10.1039/d1ma00374g
    • NLM

      Malik R, Joshi NKJ, Tomer V kumar. Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review [Internet]. Materials Advances. 2021 ; 2( 13): 4190-4227.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1039/d1ma00374g
    • Vancouver

      Malik R, Joshi NKJ, Tomer V kumar. Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review [Internet]. Materials Advances. 2021 ; 2( 13): 4190-4227.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1039/d1ma00374g
  • Source: Metal oxide nanocomposites: synthesis and applications. Unidade: IFSC

    Subjects: SENSOR, FOTOCATÁLISE, SEMICONDUTIVIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu et al. Semiconducting metal oxides for photocatalytic and gas sensing applications. Metal oxide nanocomposites: synthesis and applications. Tradução . Hoboken: Wiley, 2021. p. 402 . Disponível em: https://doi.org/10.1002/9781119364726.ch8. Acesso em: 02 nov. 2024.
    • APA

      Malik, R., Tomer, V. K., Chaudhary, V., Joshi, N. K. J., & Duhan, S. (2021). Semiconducting metal oxides for photocatalytic and gas sensing applications. In Metal oxide nanocomposites: synthesis and applications (p. 402 ). Hoboken: Wiley. doi:10.1002/9781119364726.ch8
    • NLM

      Malik R, Tomer VK, Chaudhary V, Joshi NKJ, Duhan S. Semiconducting metal oxides for photocatalytic and gas sensing applications [Internet]. In: Metal oxide nanocomposites: synthesis and applications. Hoboken: Wiley; 2021. p. 402 .[citado 2024 nov. 02 ] Available from: https://doi.org/10.1002/9781119364726.ch8
    • Vancouver

      Malik R, Tomer VK, Chaudhary V, Joshi NKJ, Duhan S. Semiconducting metal oxides for photocatalytic and gas sensing applications [Internet]. In: Metal oxide nanocomposites: synthesis and applications. Hoboken: Wiley; 2021. p. 402 .[citado 2024 nov. 02 ] Available from: https://doi.org/10.1002/9781119364726.ch8
  • Source: Nanobatteries and nanogenerators: materials, technologies and applications. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, FILMES FINOS, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KUMAR, Arvind e JOSHI, Nirav Kumar Jitendrabhai. Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches. Nanobatteries and nanogenerators: materials, technologies and applications. Tradução . Amsterdam: Elsevier, 2021. p. 666 . Disponível em: https://doi.org/10.1016/B978-0-12-821548-7.00018-X. Acesso em: 02 nov. 2024.
    • APA

      Kumar, A., & Joshi, N. K. J. (2021). Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches. In Nanobatteries and nanogenerators: materials, technologies and applications (p. 666 ). Amsterdam: Elsevier. doi:10.1016/B978-0-12-821548-7.00018-X
    • NLM

      Kumar A, Joshi NKJ. Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches [Internet]. In: Nanobatteries and nanogenerators: materials, technologies and applications. Amsterdam: Elsevier; 2021. p. 666 .[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/B978-0-12-821548-7.00018-X
    • Vancouver

      Kumar A, Joshi NKJ. Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches [Internet]. In: Nanobatteries and nanogenerators: materials, technologies and applications. Amsterdam: Elsevier; 2021. p. 666 .[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/B978-0-12-821548-7.00018-X
  • Source: Journal of Materials Science: Materials in Electronics. Unidade: IFSC

    Subjects: NANOPARTÍCULAS, MATERIAIS, OZÔNIO, SENSOR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      THIRUMALAIRAJAN, S. et al. Enhanced ultrasensitive detection of ozone gas using reduced graphene oxide-incorporated LaFeO3 nanospheres for environmental remediation process. Journal of Materials Science: Materials in Electronics, v. 31, n. 11, p. 8933-8945, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10854-020-03428-1. Acesso em: 02 nov. 2024.
    • APA

      Thirumalairajan, S., Girija, K., Mastelaro, V. R., & Subramanian, K. S. (2020). Enhanced ultrasensitive detection of ozone gas using reduced graphene oxide-incorporated LaFeO3 nanospheres for environmental remediation process. Journal of Materials Science: Materials in Electronics, 31( 11), 8933-8945. doi:10.1007/s10854-020-03428-1
    • NLM

      Thirumalairajan S, Girija K, Mastelaro VR, Subramanian KS. Enhanced ultrasensitive detection of ozone gas using reduced graphene oxide-incorporated LaFeO3 nanospheres for environmental remediation process [Internet]. Journal of Materials Science: Materials in Electronics. 2020 ; 31( 11): 8933-8945.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s10854-020-03428-1
    • Vancouver

      Thirumalairajan S, Girija K, Mastelaro VR, Subramanian KS. Enhanced ultrasensitive detection of ozone gas using reduced graphene oxide-incorporated LaFeO3 nanospheres for environmental remediation process [Internet]. Journal of Materials Science: Materials in Electronics. 2020 ; 31( 11): 8933-8945.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s10854-020-03428-1
  • Unidade: IFSC

    Subjects: SENSOR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Functional nanomaterials: advances in gas sensing technologies. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-15-4810-9. Acesso em: 02 nov. 2024. , 2020
    • APA

      Functional nanomaterials: advances in gas sensing technologies. (2020). Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer. doi:10.1007/978-981-15-4810-9
    • NLM

      Functional nanomaterials: advances in gas sensing technologies [Internet]. 2020 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-981-15-4810-9
    • Vancouver

      Functional nanomaterials: advances in gas sensing technologies [Internet]. 2020 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-981-15-4810-9
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: SENSOR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MISHRA, Prashant Kumar et al. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_11. Acesso em: 02 nov. 2024.
    • APA

      Mishra, P. K., Malik, R., Tomer, V. K., & Joshi, N. (2020). Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_11
    • NLM

      Mishra PK, Malik R, Tomer VK, Joshi N. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_11
    • Vancouver

      Mishra PK, Malik R, Tomer VK, Joshi N. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_11
  • Source: IEEE Sensors Journal. Unidade: EESC

    Subjects: SENSOR, FILTROS DE KALMAN, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NARASIMHAPPA, Mundla et al. MEMS-based IMU drift minimization: sage husa adaptive robust Kalman filtering. IEEE Sensors Journal, v. 20, n. 1, p. 250-260, 2020Tradução . . Disponível em: http://dx.doi.org/10.1109/JSEN.2019.2941273. Acesso em: 02 nov. 2024.
    • APA

      Narasimhappa, M., Mahindrakar, A. D., Guizilini, V. C., Terra, M. H., & Sabat, S. L. (2020). MEMS-based IMU drift minimization: sage husa adaptive robust Kalman filtering. IEEE Sensors Journal, 20( 1), 250-260. doi:10.1109/JSEN.2019.2941273
    • NLM

      Narasimhappa M, Mahindrakar AD, Guizilini VC, Terra MH, Sabat SL. MEMS-based IMU drift minimization: sage husa adaptive robust Kalman filtering [Internet]. IEEE Sensors Journal. 2020 ; 20( 1): 250-260.[citado 2024 nov. 02 ] Available from: http://dx.doi.org/10.1109/JSEN.2019.2941273
    • Vancouver

      Narasimhappa M, Mahindrakar AD, Guizilini VC, Terra MH, Sabat SL. MEMS-based IMU drift minimization: sage husa adaptive robust Kalman filtering [Internet]. IEEE Sensors Journal. 2020 ; 20( 1): 250-260.[citado 2024 nov. 02 ] Available from: http://dx.doi.org/10.1109/JSEN.2019.2941273
  • Source: Nanosensors for Smart Cities: Micro and Nano Technologies. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, FILMES FINOS, POLÍMEROS (MATERIAIS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu et al. Nanosensors for monitoring indoor pollution in smart cities. Nanosensors for Smart Cities: Micro and Nano Technologies. Tradução . Amsterdam: Elsevier, 2020. p. 962 . Disponível em: https://doi.org/10.1016/B978-0-12-819870-4.00014-1. Acesso em: 02 nov. 2024.
    • APA

      Malik, R., Tomer, V. K., Joshi, N. K. J., Chaudhary, V., & Lin, L. (2020). Nanosensors for monitoring indoor pollution in smart cities. In Nanosensors for Smart Cities: Micro and Nano Technologies (p. 962 ). Amsterdam: Elsevier. doi:10.1016/B978-0-12-819870-4.00014-1
    • NLM

      Malik R, Tomer VK, Joshi NKJ, Chaudhary V, Lin L. Nanosensors for monitoring indoor pollution in smart cities [Internet]. In: Nanosensors for Smart Cities: Micro and Nano Technologies. Amsterdam: Elsevier; 2020. p. 962 .[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/B978-0-12-819870-4.00014-1
    • Vancouver

      Malik R, Tomer VK, Joshi NKJ, Chaudhary V, Lin L. Nanosensors for monitoring indoor pollution in smart cities [Internet]. In: Nanosensors for Smart Cities: Micro and Nano Technologies. Amsterdam: Elsevier; 2020. p. 962 .[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/B978-0-12-819870-4.00014-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024