Machine learning for advanced functional materials. [Prefácio] (2023)
- Authors:
- Autor USP: JOSHI, NIRAVKUMAR JITENDRABHAI - IFSC
- Unidade: IFSC
- DOI: 10.1007/978-981-99-0393-1
- Subjects: APRENDIZADO COMPUTACIONAL; ELETROQUÍMICA; SENSOR; INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Source:
- Título: Machine learning for advanced functional materials
- Volume/Número/Paginação/Ano: 303 p
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
JOSHI, Nirav Kumar Jitendrabhai e KUSHVAHA, Vinod e MADHUSHRI, Priyanka. Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 12 fev. 2026. , 2023 -
APA
Joshi, N. K. J., Kushvaha, V., & Madhushri, P. (2023). Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1 -
NLM
Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-981-99-0393-1 -
Vancouver
Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-981-99-0393-1 - Functional nanomaterials: advances in gas sensing technologies
- Recent advances on UV-enhanced oxide nanostructures gas sensors
- Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor
- Silicon-based hybrid nanoparticles: fundamentals, properties, and applications
- 1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics
- Nanosensors for monitoring indoor pollution in smart cities
- Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review
- Machine learning for advanced functional materials
- Advances and challenges in WO3 nanostructures’ synthesis
- Green synthesis and applications of ZnO and TiO2 nanostructures
Informações sobre o DOI: 10.1007/978-981-99-0393-1 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3138768.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
