Filtros : "Nova Caledonia" "Topology and its Applications" Removidos: "GRU020" "EP-PCS" "BELLINI, MATHEUS KOVEROFF" "Encontro Nacional de Fisica da Materia Condensada" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Assunto: TEOREMA DO PONTO FIXO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e STAECKER, P. Christopher. Axioms for the coincidence index of maps between manifolds of the same dimension. Topology and its Applications, v. 159, n. 18, p. 3760-3776, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2012.08.028. Acesso em: 16 nov. 2024.
    • APA

      Gonçalves, D. L., & Staecker, P. C. (2012). Axioms for the coincidence index of maps between manifolds of the same dimension. Topology and its Applications, 159( 18), 3760-3776. doi:10.1016/j.topol.2012.08.028
    • NLM

      Gonçalves DL, Staecker PC. Axioms for the coincidence index of maps between manifolds of the same dimension [Internet]. Topology and its Applications. 2012 ; 159( 18): 3760-3776.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topol.2012.08.028
    • Vancouver

      Gonçalves DL, Staecker PC. Axioms for the coincidence index of maps between manifolds of the same dimension [Internet]. Topology and its Applications. 2012 ; 159( 18): 3760-3776.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topol.2012.08.028
  • Source: Topology and its Applications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KELLY, M. R. Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II. Topology and its Applications, v. 159, n. 18, p. 3777\20133785, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2012.08.029. Acesso em: 16 nov. 2024.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2012). Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II. Topology and its Applications, 159( 18), 3777\20133785. doi:10.1016/j.topol.2012.08.029
    • NLM

      Gonçalves DL, Kelly MR. Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II [Internet]. Topology and its Applications. 2012 ; 159( 18): 3777\20133785.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topol.2012.08.029
    • Vancouver

      Gonçalves DL, Kelly MR. Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II [Internet]. Topology and its Applications. 2012 ; 159( 18): 3777\20133785.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topol.2012.08.029
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e WONG, Peter. Nielsen numbers of selfmaps of Sol 3-manifolds. Topology and its Applications, v. 159, n. 18, p. 3729\20133737, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2012.06.013. Acesso em: 16 nov. 2024.
    • APA

      Gonçalves, D. L., & Wong, P. (2012). Nielsen numbers of selfmaps of Sol 3-manifolds. Topology and its Applications, 159( 18), 3729\20133737. doi:10.1016/j.topol.2012.06.013
    • NLM

      Gonçalves DL, Wong P. Nielsen numbers of selfmaps of Sol 3-manifolds [Internet]. Topology and its Applications. 2012 ; 159( 18): 3729\20133737.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topol.2012.06.013
    • Vancouver

      Gonçalves DL, Wong P. Nielsen numbers of selfmaps of Sol 3-manifolds [Internet]. Topology and its Applications. 2012 ; 159( 18): 3729\20133737.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topol.2012.06.013
  • Source: Topology and its Applications. Unidade: IME

    Assunto: COHOMOLOGIA DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. On cohomologies and extensions of cyclic groups. Topology and its Applications, v. 158, n. 14, p. 1858-1865, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.topoL.2011.06.022. Acesso em: 16 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2011). On cohomologies and extensions of cyclic groups. Topology and its Applications, 158( 14), 1858-1865. doi:10.1016/j.topoL.2011.06.022
    • NLM

      Golasinski M, Gonçalves DL. On cohomologies and extensions of cyclic groups [Internet]. Topology and its Applications. 2011 ; 158( 14): 1858-1865.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topoL.2011.06.022
    • Vancouver

      Golasinski M, Gonçalves DL. On cohomologies and extensions of cyclic groups [Internet]. Topology and its Applications. 2011 ; 158( 14): 1858-1865.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topoL.2011.06.022
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CLAUDIO, Mario Henrique Andrade e SPREAFICO, Mauro Flávio. Homotopy type of Gauge groups of quaternionic line bundles over spheres. Topology and its Applications, v. 156, n. 3, p. 643-651, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2008.08.016. Acesso em: 16 nov. 2024.
    • APA

      Claudio, M. H. A., & Spreafico, M. F. (2009). Homotopy type of Gauge groups of quaternionic line bundles over spheres. Topology and its Applications, 156( 3), 643-651. doi:10.1016/j.topol.2008.08.016
    • NLM

      Claudio MHA, Spreafico MF. Homotopy type of Gauge groups of quaternionic line bundles over spheres [Internet]. Topology and its Applications. 2009 ; 156( 3): 643-651.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topol.2008.08.016
    • Vancouver

      Claudio MHA, Spreafico MF. Homotopy type of Gauge groups of quaternionic line bundles over spheres [Internet]. Topology and its Applications. 2009 ; 156( 3): 643-651.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.topol.2008.08.016

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024