Homotopy type of Gauge groups of quaternionic line bundles over spheres (2009)
- Authors:
- Autor USP: SPREAFICO, MAURO FLÁVIO - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.topol.2008.08.016
- Assunto: TOPOLOGIA ALGÉBRICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Topology and its Applications
- ISSN: 0166-8641
- Volume/Número/Paginação/Ano: v. 156, n. 3, p. 643-651, 2009
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CLAUDIO, Mario Henrique Andrade e SPREAFICO, Mauro Flávio. Homotopy type of Gauge groups of quaternionic line bundles over spheres. Topology and its Applications, v. 156, n. 3, p. 643-651, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2008.08.016. Acesso em: 31 out. 2024. -
APA
Claudio, M. H. A., & Spreafico, M. F. (2009). Homotopy type of Gauge groups of quaternionic line bundles over spheres. Topology and its Applications, 156( 3), 643-651. doi:10.1016/j.topol.2008.08.016 -
NLM
Claudio MHA, Spreafico MF. Homotopy type of Gauge groups of quaternionic line bundles over spheres [Internet]. Topology and its Applications. 2009 ; 156( 3): 643-651.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.topol.2008.08.016 -
Vancouver
Claudio MHA, Spreafico MF. Homotopy type of Gauge groups of quaternionic line bundles over spheres [Internet]. Topology and its Applications. 2009 ; 156( 3): 643-651.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.topol.2008.08.016 - On the Barnes double zeta and Gamma functions
- Singular perturbations with boundary conditions and the Casimir effect in the half space
- The analytic torsion of a cone over an odd dimensional manifold
- Zeta invariants for Dirichlet series
- Zeta invariants for dirichlet series
- Zeta determinant and operator determinants
- Dirichlet series and gamma function associated with rational functions
- Multiple poisson Kernels
- Zeta function regularization for a scalar field in a compact domain
- The analytic torsion of the cone over an odd dimensional manifold
Informações sobre o DOI: 10.1016/j.topol.2008.08.016 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas