Nielsen numbers of selfmaps of Sol 3-manifolds (2012)
- Authors:
- Autor USP: GONCALVES, DACIBERG LIMA - IME
- Unidade: IME
- DOI: 10.1016/j.topol.2012.06.013
- Assunto: TOPOLOGIA ALGÉBRICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Topology and its Applications
- ISSN: 0166-8641
- Volume/Número/Paginação/Ano: v. 159, n. 18, p. 3729\20133737, 2012
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GONÇALVES, Daciberg Lima e WONG, Peter. Nielsen numbers of selfmaps of Sol 3-manifolds. Topology and its Applications, v. 159, n. 18, p. 3729\20133737, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2012.06.013. Acesso em: 25 jan. 2026. -
APA
Gonçalves, D. L., & Wong, P. (2012). Nielsen numbers of selfmaps of Sol 3-manifolds. Topology and its Applications, 159( 18), 3729\20133737. doi:10.1016/j.topol.2012.06.013 -
NLM
Gonçalves DL, Wong P. Nielsen numbers of selfmaps of Sol 3-manifolds [Internet]. Topology and its Applications. 2012 ; 159( 18): 3729\20133737.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.topol.2012.06.013 -
Vancouver
Gonçalves DL, Wong P. Nielsen numbers of selfmaps of Sol 3-manifolds [Internet]. Topology and its Applications. 2012 ; 159( 18): 3729\20133737.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.topol.2012.06.013 - Equations in free groups and coincidence of mappings on surfaces
- On automorphisms of finite Abelian p-groups
- Postnikov towers and Gottlieb groups of orbit spaces
- Primitivity of monodromy groups of branched coverings: a non-orientable case
- Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2
- Wecken type problems for self-maps of the Klein bottle
- The classification and the conjugacy classes of the finite subgroups of the sphere braid groups
- Equivariant evaluation subgroups and Rhodes groups
- Twisted conjugacy classes in nilpotent groups
- Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i)
Informações sobre o DOI: 10.1016/j.topol.2012.06.013 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
