Source: Data Mining and Knowledge Discovery. Unidade: ICMC
Subjects: APRENDIZADO COMPUTACIONAL, ALGORITMOS
ABNT
RAIMUNDO, Marcos M e NONATO, Luis Gustavo e POCO, Jorge. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm. Data Mining and Knowledge Discovery, v. 38, p. 2942-2974, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10618-022-00906-4. Acesso em: 16 nov. 2024.APA
Raimundo, M. M., Nonato, L. G., & Poco, J. (2024). Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm. Data Mining and Knowledge Discovery, 38, 2942-2974. doi:10.1007/s10618-022-00906-4NLM
Raimundo MM, Nonato LG, Poco J. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm [Internet]. Data Mining and Knowledge Discovery. 2024 ; 38 2942-2974.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/s10618-022-00906-4Vancouver
Raimundo MM, Nonato LG, Poco J. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm [Internet]. Data Mining and Knowledge Discovery. 2024 ; 38 2942-2974.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/s10618-022-00906-4