Filtros : "Ucrânia" "IME-MAT" Removido: "2002" Limpar

Filtros



Refine with date range


  • Source: Mathematics. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAZEMI, Abdullah et al. Three representation types for systems of forms and linear maps. Mathematics, v. 9, n. art. 455, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.3390/math9050455. Acesso em: 18 nov. 2024.
    • APA

      Alazemi, A., Anđelić, M., da Fonseca, C. M., Futorny, V., & Sergeichuk, V. V. (2021). Three representation types for systems of forms and linear maps. Mathematics, 9( art. 455), 1-12. doi:10.3390/math9050455
    • NLM

      Alazemi A, Anđelić M, da Fonseca CM, Futorny V, Sergeichuk VV. Three representation types for systems of forms and linear maps [Internet]. Mathematics. 2021 ; 9( art. 455): 1-12.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3390/math9050455
    • Vancouver

      Alazemi A, Anđelić M, da Fonseca CM, Futorny V, Sergeichuk VV. Three representation types for systems of forms and linear maps [Internet]. Mathematics. 2021 ; 9( art. 455): 1-12.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3390/math9050455
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, FORMAS QUADRÁTICAS, FORMAS BILINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Victor Senoguchi et al. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, v. 611, p. 118-134, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.12.005. Acesso em: 18 nov. 2024.
    • APA

      Borges, V. S., Kashuba, I., Sergeichuk, V. V., Sodré, E. V., & Zaidan, A. (2021). Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, 611, 118-134. doi:10.1016/j.laa.2020.12.005
    • NLM

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005
    • Vancouver

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005
  • Source: Linear Algebra and its Applications. Conference titles: Linear Algebra without Borders - ILAS Conference. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. Disponível em: https://doi.org/10.1016/j.laa.2020.12.009. Acesso em: 18 nov. 2024. , 2021
    • APA

      Futorny, V., Klymchuk, T., Klymenko, O., Sergeichuk, V. V., & Shvai, N. (2021). Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. doi:10.1016/j.laa.2020.12.009
    • NLM

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
    • Vancouver

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M. et al. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, v. 612, p. 188-205, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.10.040. Acesso em: 18 nov. 2024.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKII, Genrich R. et al. Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, v. 609, p. 317-331, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.09.018. Acesso em: 18 nov. 2024.
    • APA

      Belitskii, G. R., Futorny, V., Muzychuk, M., & Sergeichuk, V. V. (2021). Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, 609, 317-331. doi:10.1016/j.laa.2020.09.018
    • NLM

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
    • Vancouver

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ESPAÇOS COM PRODUTO INTERNO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAALIM, Jonathan V. et al. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, v. 587, p. 92-110, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2019.11.004. Acesso em: 18 nov. 2024.
    • APA

      Caalim, J. V., Futorny, V., Sergeichuk, V. V., & Tanaka, Y. -ichi. (2020). Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, 587, 92-110. doi:10.1016/j.laa.2019.11.004
    • NLM

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
    • Vancouver

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TENSORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GROCHOW, Joshua A. e SERGEICHUK, Vladimir V. Wildness for tensors. Linear Algebra and its Applications, v. 566, p. 212-244, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.12.022. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Grochow, J. A., & Sergeichuk, V. V. (2019). Wildness for tensors. Linear Algebra and its Applications, 566, 212-244. doi:10.1016/j.laa.2018.12.022
    • NLM

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
    • Vancouver

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, v. 536, p. 201-209, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.09.019. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., Petravchuk, A. P., & Sergeichuk, V. V. (2018). Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, 536, 201-209. doi:10.1016/j.laa.2017.09.019
    • NLM

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
    • Vancouver

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESHMATOV, Farkhod et al. Noncommutative Noether’s problem for complex reflection groups. Proceedings of the American Mathematical Society, v. 145, n. 12, p. 5043-5052, 2017Tradução . . Disponível em: https://doi.org/10.1090/proc/13646. Acesso em: 18 nov. 2024.
    • APA

      Eshmatov, F., Futorny, V., Ovsienko, S., & Schwarz, J. F. (2017). Noncommutative Noether’s problem for complex reflection groups. Proceedings of the American Mathematical Society, 145( 12), 5043-5052. doi:10.1090/proc/13646
    • NLM

      Eshmatov F, Futorny V, Ovsienko S, Schwarz JF. Noncommutative Noether’s problem for complex reflection groups [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 12): 5043-5052.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/proc/13646
    • Vancouver

      Eshmatov F, Futorny V, Ovsienko S, Schwarz JF. Noncommutative Noether’s problem for complex reflection groups [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 12): 5043-5052.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/proc/13646
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Carlos M. et al. Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, v. 515, n. , p. 1-5, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.11.012. Acesso em: 18 nov. 2024.
    • APA

      Fonseca, C. M., Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2017). Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, 515( ), 1-5. doi:10.1016/j.laa.2016.11.012
    • NLM

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
    • Vancouver

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, v. 519, p. 278-295, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.01.006. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael et al. The max-plus algebra of exponent matrices of tiled orders. Journal of Algebra, v. 490, p. 1-20, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.05.045. Acesso em: 18 nov. 2024.
    • APA

      Dokuchaev, M., Kirichenko, V., Kudryavtseva, G., & Plakhotnyk, M. (2017). The max-plus algebra of exponent matrices of tiled orders. Journal of Algebra, 490, 1-20. doi:10.1016/j.jalgebra.2017.05.045
    • NLM

      Dokuchaev M, Kirichenko V, Kudryavtseva G, Plakhotnyk M. The max-plus algebra of exponent matrices of tiled orders [Internet]. Journal of Algebra. 2017 ;490 1-20.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.05.045
    • Vancouver

      Dokuchaev M, Kirichenko V, Kudryavtseva G, Plakhotnyk M. The max-plus algebra of exponent matrices of tiled orders [Internet]. Journal of Algebra. 2017 ;490 1-20.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.05.045
  • Source: Algebra and Discrete Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE JORDAN

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e OVSIENKO, Serge e SHESTAKOV, Ivan P. On the representation type of Jordan basic algebras. Algebra and Discrete Mathematics, v. 23, n. 1, p. 47-61, 2017Tradução . . Disponível em: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443. Acesso em: 18 nov. 2024.
    • APA

      Kashuba, I., Ovsienko, S., & Shestakov, I. P. (2017). On the representation type of Jordan basic algebras. Algebra and Discrete Mathematics, 23( 1), 47-61. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
    • NLM

      Kashuba I, Ovsienko S, Shestakov IP. On the representation type of Jordan basic algebras [Internet]. Algebra and Discrete Mathematics. 2017 ; 23( 1): 47-61.[citado 2024 nov. 18 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
    • Vancouver

      Kashuba I, Ovsienko S, Shestakov IP. On the representation type of Jordan basic algebras [Internet]. Algebra and Discrete Mathematics. 2017 ; 23( 1): 47-61.[citado 2024 nov. 18 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 18 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLYMCHUK, Tatiana e SERGEICHUK, Vladimir V. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, v. 510, p. 246-258, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.08.022. Acesso em: 18 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2016). Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, 510, 246-258. doi:10.1016/j.laa.2016.08.022
    • NLM

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
    • Vancouver

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e KIRICHENKO, Vladimir V e PLAKHOTNYK, Makar. On exponent matrices of tiled orders. Journal of Algebra and Its Applications, v. 15, n. 10, p. 1650192-1-1650192-25, 2016Tradução . . Disponível em: https://doi.org/10.1142/S0219498816501929. Acesso em: 18 nov. 2024.
    • APA

      Dokuchaev, M., Kirichenko, V. V., & Plakhotnyk, M. (2016). On exponent matrices of tiled orders. Journal of Algebra and Its Applications, 15( 10), 1650192-1-1650192-25. doi:10.1142/S0219498816501929
    • NLM

      Dokuchaev M, Kirichenko VV, Plakhotnyk M. On exponent matrices of tiled orders [Internet]. Journal of Algebra and Its Applications. 2016 ; 15( 10): 1650192-1-1650192-25.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0219498816501929
    • Vancouver

      Dokuchaev M, Kirichenko VV, Plakhotnyk M. On exponent matrices of tiled orders [Internet]. Journal of Algebra and Its Applications. 2016 ; 15( 10): 1650192-1-1650192-25.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0219498816501929
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEKKERT, Viktor e DROZD, Yuriy e FUTORNY, Vyacheslav. Tilting, deformations and representations of linear groups over Euclidean algebras. Journal of Pure and Applied Algebra, v. 217, n. 6, p. 1141-1162, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2012.09.031. Acesso em: 18 nov. 2024.
    • APA

      Bekkert, V., Drozd, Y., & Futorny, V. (2013). Tilting, deformations and representations of linear groups over Euclidean algebras. Journal of Pure and Applied Algebra, 217( 6), 1141-1162. doi:10.1016/j.jpaa.2012.09.031
    • NLM

      Bekkert V, Drozd Y, Futorny V. Tilting, deformations and representations of linear groups over Euclidean algebras [Internet]. Journal of Pure and Applied Algebra. 2013 ; 217( 6): 1141-1162.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jpaa.2012.09.031
    • Vancouver

      Bekkert V, Drozd Y, Futorny V. Tilting, deformations and representations of linear groups over Euclidean algebras [Internet]. Journal of Pure and Applied Algebra. 2013 ; 217( 6): 1141-1162.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jpaa.2012.09.031
  • Source: Linear Algebra and Its Applications. Unidade: IME

    Assunto: ÁLGEBRA MULTILINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M et al. Systems of subspaces of a unitary space. Linear Algebra and Its Applications, v. 438, n. 5, p. 2561-2573, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2012.10.038. Acesso em: 18 nov. 2024.
    • APA

      Bondarenko, V. M., Futorny, V., Klimchuk, T., Sergeichuk, V. V., & Iusenko, K. (2013). Systems of subspaces of a unitary space. Linear Algebra and Its Applications, 438( 5), 2561-2573. doi:10.1016/j.laa.2012.10.038
    • NLM

      Bondarenko VM, Futorny V, Klimchuk T, Sergeichuk VV, Iusenko K. Systems of subspaces of a unitary space [Internet]. Linear Algebra and Its Applications. 2013 ; 438( 5): 2561-2573.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2012.10.038
    • Vancouver

      Bondarenko VM, Futorny V, Klimchuk T, Sergeichuk VV, Iusenko K. Systems of subspaces of a unitary space [Internet]. Linear Algebra and Its Applications. 2013 ; 438( 5): 2561-2573.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2012.10.038
  • Source: Journal of Algebra. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e NOVIKOV, B e PINEDO, Hector. The partial Schur multiplier of a group. Journal of Algebra, v. 392, p. 199-225, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2013.07.002. Acesso em: 18 nov. 2024.
    • APA

      Dokuchaev, M., Novikov, B., & Pinedo, H. (2013). The partial Schur multiplier of a group. Journal of Algebra, 392, 199-225. doi:10.1016/j.jalgebra.2013.07.002
    • NLM

      Dokuchaev M, Novikov B, Pinedo H. The partial Schur multiplier of a group [Internet]. Journal of Algebra. 2013 ; 392 199-225.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.07.002
    • Vancouver

      Dokuchaev M, Novikov B, Pinedo H. The partial Schur multiplier of a group [Internet]. Journal of Algebra. 2013 ; 392 199-225.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.07.002
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Debora Duarte de et al. Cycles of linear and semilinear mappings. Linear Algebra and its Applications, v. 438, n. 8, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2012.12.023. Acesso em: 18 nov. 2024.
    • APA

      Oliveira, D. D. de, Futorny, V., Klimchuk, T., kovalenko, D., & Sergeichuk, V. (2013). Cycles of linear and semilinear mappings. Linear Algebra and its Applications, 438( 8). doi:10.1016/j.laa.2012.12.023
    • NLM

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023
    • Vancouver

      Oliveira DD de, Futorny V, Klimchuk T, kovalenko D, Sergeichuk V. Cycles of linear and semilinear mappings [Internet]. Linear Algebra and its Applications. 2013 ; 438( 8):[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.laa.2012.12.023

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024