Filtros : "Indexado no Zentralblatt MATH" "Hungria" Removidos: "IFSC777" "Jornal da Tarde" "zxx" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 09 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SCHLOMIUK, Dana e TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 6, p. 1-56, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.6. Acesso em: 09 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 35, p. 1-89, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.35. Acesso em: 09 nov. 2024.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 35), 1-89. doi:10.14232/ejqtde.2021.1.35
    • NLM

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
  • Source: Publicationes Mathematicae. Unidade: ICMC

    Subjects: COBORDISMO, HOMOLOGIA, COHOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRASSELET, Jean Paul et al. Cobordism of maps of locally orientable Witt spaces. Publicationes Mathematicae, v. 94, n. 3-4, p. 299-317, 2019Tradução . . Disponível em: https://doi.org/10.5486/PMD.2019.8265. Acesso em: 09 nov. 2024.
    • APA

      Brasselet, J. P., Libardi, A. K. M., Rizziolli, E. C., & Saia, M. J. (2019). Cobordism of maps of locally orientable Witt spaces. Publicationes Mathematicae, 94( 3-4), 299-317. doi:10.5486/PMD.2019.8265
    • NLM

      Brasselet JP, Libardi AKM, Rizziolli EC, Saia MJ. Cobordism of maps of locally orientable Witt spaces [Internet]. Publicationes Mathematicae. 2019 ; 94( 3-4): 299-317.[citado 2024 nov. 09 ] Available from: https://doi.org/10.5486/PMD.2019.8265
    • Vancouver

      Brasselet JP, Libardi AKM, Rizziolli EC, Saia MJ. Cobordism of maps of locally orientable Witt spaces [Internet]. Publicationes Mathematicae. 2019 ; 94( 3-4): 299-317.[citado 2024 nov. 09 ] Available from: https://doi.org/10.5486/PMD.2019.8265
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCINGER, Matej et al. Linearizability problem of persistent centers. Electronic Journal of Qualitative Theory of Differential Equations, n. 37, p. 1-27, 2018Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2018.1.37. Acesso em: 09 nov. 2024.
    • APA

      Mencinger, M., Fercec, B., Fernandes, W., & Oliveira, R. D. dos S. (2018). Linearizability problem of persistent centers. Electronic Journal of Qualitative Theory of Differential Equations, ( 37), 1-27. doi:10.14232/ejqtde.2018.1.37
    • NLM

      Mencinger M, Fercec B, Fernandes W, Oliveira RD dos S. Linearizability problem of persistent centers [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2018 ;( 37): 1-27.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14232/ejqtde.2018.1.37
    • Vancouver

      Mencinger M, Fercec B, Fernandes W, Oliveira RD dos S. Linearizability problem of persistent centers [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2018 ;( 37): 1-27.[citado 2024 nov. 09 ] Available from: https://doi.org/10.14232/ejqtde.2018.1.37
  • Source: Acta Mathematica Hungarica. Unidade: ICMC

    Assunto: TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e BELLA, A. A definitive improvement of a game-theoretic bound and the long tightness game. Acta Mathematica Hungarica, v. 155, n. 2, p. 458-465, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10474-018-0843-6. Acesso em: 09 nov. 2024.
    • APA

      Aurichi, L. F., & Bella, A. (2018). A definitive improvement of a game-theoretic bound and the long tightness game. Acta Mathematica Hungarica, 155( 2), 458-465. doi:10.1007/s10474-018-0843-6
    • NLM

      Aurichi LF, Bella A. A definitive improvement of a game-theoretic bound and the long tightness game [Internet]. Acta Mathematica Hungarica. 2018 ; 155( 2): 458-465.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10474-018-0843-6
    • Vancouver

      Aurichi LF, Bella A. A definitive improvement of a game-theoretic bound and the long tightness game [Internet]. Acta Mathematica Hungarica. 2018 ; 155( 2): 458-465.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10474-018-0843-6
  • Source: Publicationes Mathematicae. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Focal set of curves in the Minkowski space near lightlike points. Publicationes Mathematicae, v. 88, n. 3-4, p. 487-510, 2016Tradução . . Disponível em: https://doi.org/10.5486/PMD.2016.7451. Acesso em: 09 nov. 2024.
    • APA

      Nabarro, A. C., & Sacramento, A. de J. (2016). Focal set of curves in the Minkowski space near lightlike points. Publicationes Mathematicae, 88( 3-4), 487-510. doi:10.5486/PMD.2016.7451
    • NLM

      Nabarro AC, Sacramento A de J. Focal set of curves in the Minkowski space near lightlike points [Internet]. Publicationes Mathematicae. 2016 ; 88( 3-4): 487-510.[citado 2024 nov. 09 ] Available from: https://doi.org/10.5486/PMD.2016.7451
    • Vancouver

      Nabarro AC, Sacramento A de J. Focal set of curves in the Minkowski space near lightlike points [Internet]. Publicationes Mathematicae. 2016 ; 88( 3-4): 487-510.[citado 2024 nov. 09 ] Available from: https://doi.org/10.5486/PMD.2016.7451

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024