Filtros : "BIOTECNOLOGIA" "Reino Unido" Removidos: "Química" "ICB-BMP" "IF/FE/IQ" Limpar

Filtros



Refine with date range


  • Source: Annals of Global Health. Unidade: IQSC

    Subjects: BIODIVERSIDADE, EQUIDADE, BIOTECNOLOGIA, PRODUTOS NATURAIS, FRUTOS DO MAR, SAÚDE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FLEMING, Lora E. et al. Enhancing human health and wellbeing through sustainably and equitably unlocking a healthy ocean’s potential. Annals of Global Health, v. 90, n. 4, p. 1-28, 2024Tradução . . Disponível em: https://doi. org/10.5334/aogh.4471. Acesso em: 17 nov. 2024.
    • APA

      Fleming, L. E., Landrigan, P. J., Ashford, O. S., Whitman, E. M., Swift, A., Gerwick, W. H., et al. (2024). Enhancing human health and wellbeing through sustainably and equitably unlocking a healthy ocean’s potential. Annals of Global Health, 90( 4), 1-28. doi:10.5334/aogh.4471
    • NLM

      Fleming LE, Landrigan PJ, Ashford OS, Whitman EM, Swift A, Gerwick WH, Heymans JJ, Hicks CC, Morrissey K, White MP, Creencia LA, Alexander KA, Astell-Burt T, Berlinck RG de S, Cohen PJ, Hixson R, Islam MM, Iwasaki A, Praptiwi RA, Raps H, Remy JY, Sowman G, Ternon E, Thiele T, Thilsted SH, Uku J, Ockenden S, Kumar P. Enhancing human health and wellbeing through sustainably and equitably unlocking a healthy ocean’s potential [Internet]. Annals of Global Health. 2024 ;90( 4): 1-28.[citado 2024 nov. 17 ] Available from: https://doi. org/10.5334/aogh.4471
    • Vancouver

      Fleming LE, Landrigan PJ, Ashford OS, Whitman EM, Swift A, Gerwick WH, Heymans JJ, Hicks CC, Morrissey K, White MP, Creencia LA, Alexander KA, Astell-Burt T, Berlinck RG de S, Cohen PJ, Hixson R, Islam MM, Iwasaki A, Praptiwi RA, Raps H, Remy JY, Sowman G, Ternon E, Thiele T, Thilsted SH, Uku J, Ockenden S, Kumar P. Enhancing human health and wellbeing through sustainably and equitably unlocking a healthy ocean’s potential [Internet]. Annals of Global Health. 2024 ;90( 4): 1-28.[citado 2024 nov. 17 ] Available from: https://doi. org/10.5334/aogh.4471
  • Source: Carbohydrate Polymers. Unidade: IFSC

    Subjects: ENZIMAS, POLISSACARÍDEOS, BIOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VACILOTTO, Milena Moreira et al. Two-domain GH30 xylanase from human gut microbiota as a tool for enzymatic production of xylooligosaccharides: crystallographic structure and a synergy with GH11 xylosidase. Carbohydrate Polymers, v. 337, p. 122141-1-122141-14 + supplementary data, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2024.122141. Acesso em: 17 nov. 2024.
    • APA

      Vacilotto, M. M., Montalvão, L. de A., Pellegrini, V. de O. A., Liberato, M. V., Araújo, E. A. de, & Polikarpov, I. (2024). Two-domain GH30 xylanase from human gut microbiota as a tool for enzymatic production of xylooligosaccharides: crystallographic structure and a synergy with GH11 xylosidase. Carbohydrate Polymers, 337, 122141-1-122141-14 + supplementary data. doi:10.1016/j.carbpol.2024.122141
    • NLM

      Vacilotto MM, Montalvão L de A, Pellegrini V de OA, Liberato MV, Araújo EA de, Polikarpov I. Two-domain GH30 xylanase from human gut microbiota as a tool for enzymatic production of xylooligosaccharides: crystallographic structure and a synergy with GH11 xylosidase [Internet]. Carbohydrate Polymers. 2024 ; 337 122141-1-122141-14 + supplementary data.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.carbpol.2024.122141
    • Vancouver

      Vacilotto MM, Montalvão L de A, Pellegrini V de OA, Liberato MV, Araújo EA de, Polikarpov I. Two-domain GH30 xylanase from human gut microbiota as a tool for enzymatic production of xylooligosaccharides: crystallographic structure and a synergy with GH11 xylosidase [Internet]. Carbohydrate Polymers. 2024 ; 337 122141-1-122141-14 + supplementary data.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.carbpol.2024.122141
  • Source: Food research international. Unidades: EEL, BIOTECNOLOGIA

    Subjects: BIOTECNOLOGIA, SUSTENTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Samara Cardoso et al. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food research international, v. 166, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.foodres.2023.112596. Acesso em: 17 nov. 2024.
    • APA

      Alves, S. C., Ruiz, E. D., Lisboa, B., Sharma, M., Mussatto, S. I., Thakur, V. K., et al. (2023). Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food research international, 166, 1-12. doi:10.1016/j.foodres.2023.112596
    • NLM

      Alves SC, Ruiz ED, Lisboa B, Sharma M, Mussatto SI, Thakur VK, Kalaskar DM, Gupta VK, Chandel AK. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world [Internet]. Food research international. 2023 ;166 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.foodres.2023.112596
    • Vancouver

      Alves SC, Ruiz ED, Lisboa B, Sharma M, Mussatto SI, Thakur VK, Kalaskar DM, Gupta VK, Chandel AK. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world [Internet]. Food research international. 2023 ;166 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.foodres.2023.112596
  • Source: Preparative biochemistry & biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Matheus Maitan et al. Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification. Preparative biochemistry & biotechnology, v. 53, n. 10, p. 1-7, 2023Tradução . . Disponível em: https://doi.org/10.1080/10826068.2023.2279109. Acesso em: 17 nov. 2024.
    • APA

      Vieira, M. M., Valadares, F. de L., Mendoza, J. A. V., Silva, S. S. da, Segato, F., & Chandel, A. K. (2023). Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification. Preparative biochemistry & biotechnology, 53( 10), 1-7. doi:10.1080/10826068.2023.2279109
    • NLM

      Vieira MM, Valadares F de L, Mendoza JAV, Silva SS da, Segato F, Chandel AK. Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification [Internet]. Preparative biochemistry & biotechnology. 2023 ;53( 10): 1-7.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/10826068.2023.2279109
    • Vancouver

      Vieira MM, Valadares F de L, Mendoza JAV, Silva SS da, Segato F, Chandel AK. Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification [Internet]. Preparative biochemistry & biotechnology. 2023 ;53( 10): 1-7.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/10826068.2023.2279109
  • Source: Process Biochemistry. Unidades: EP, BIOTECNOLOGIA, EACH

    Subjects: VACINA ANTIRRÁBICA, VÍRUS DA RAIVA, BIOTECNOLOGIA, BIOPROCESSOS, RAIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUARDALINI, Luis Giovani Oliveira et al. Oxygen uptake and transfer rates throughout production of recombinant baculovirus and rabies virus-like particles. Process Biochemistry, v. 124, n. Ja 2023, p. 189-200, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.procbio.2022.11.021. Acesso em: 17 nov. 2024.
    • APA

      Guardalini, L. G. O., Cavalcante, P. E. da S., Leme, J., Mello, R. G. de, Bernardino, T. C., Astray, R. M., et al. (2023). Oxygen uptake and transfer rates throughout production of recombinant baculovirus and rabies virus-like particles. Process Biochemistry, 124( Ja 2023), 189-200. doi:10.1016/j.procbio.2022.11.021
    • NLM

      Guardalini LGO, Cavalcante PE da S, Leme J, Mello RG de, Bernardino TC, Astray RM, Tonso A, Jorge SAC, Fernández Núñez EG. Oxygen uptake and transfer rates throughout production of recombinant baculovirus and rabies virus-like particles [Internet]. Process Biochemistry. 2023 ; 124( Ja 2023): 189-200.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.procbio.2022.11.021
    • Vancouver

      Guardalini LGO, Cavalcante PE da S, Leme J, Mello RG de, Bernardino TC, Astray RM, Tonso A, Jorge SAC, Fernández Núñez EG. Oxygen uptake and transfer rates throughout production of recombinant baculovirus and rabies virus-like particles [Internet]. Process Biochemistry. 2023 ; 124( Ja 2023): 189-200.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.procbio.2022.11.021
  • Source: Critical reviews in biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARORA, Richa et al. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Critical reviews in biotechnology, v. 43, n. 7, p. 1-18, 2023Tradução . . Disponível em: https://doi.org/10.1080/07388551.2022.2151409. Acesso em: 17 nov. 2024.
    • APA

      Arora, R., Singh, P., Sarangi, P. K., Kumar, S., & Chandel, A. K. (2023). A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Critical reviews in biotechnology, 43( 7), 1-18. doi:10.1080/07388551.2022.2151409
    • NLM

      Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions [Internet]. Critical reviews in biotechnology. 2023 ;43( 7): 1-18.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/07388551.2022.2151409
    • Vancouver

      Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions [Internet]. Critical reviews in biotechnology. 2023 ;43( 7): 1-18.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/07388551.2022.2151409
  • Source: Current Opinion in Biotechnology. Unidade: IQSC

    Subjects: ESPECTROMETRIA DE MASSAS, BIOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDINA, Deyber Arley Vargas et al. The overshadowed role of electron ionization–mass spectrometry in analytical biotechnology. Current Opinion in Biotechnology, v. 82, p. 102965, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.copbio.2023.102965. Acesso em: 17 nov. 2024.
    • APA

      Medina, D. A. V., Maciel, E. V. S., Santos, N. G. P. dos, & Lanças, F. M. (2023). The overshadowed role of electron ionization–mass spectrometry in analytical biotechnology. Current Opinion in Biotechnology, 82, 102965. doi:10.1016/j.copbio.2023.102965
    • NLM

      Medina DAV, Maciel EVS, Santos NGP dos, Lanças FM. The overshadowed role of electron ionization–mass spectrometry in analytical biotechnology [Internet]. Current Opinion in Biotechnology. 2023 ; 82 102965.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.copbio.2023.102965
    • Vancouver

      Medina DAV, Maciel EVS, Santos NGP dos, Lanças FM. The overshadowed role of electron ionization–mass spectrometry in analytical biotechnology [Internet]. Current Opinion in Biotechnology. 2023 ; 82 102965.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.copbio.2023.102965
  • Source: Biochimica et biophysica acta-proteins and proteomics.

    Subjects: BIOTECNOLOGIA, ENZIMAS, BAGAÇOS, CANA-DE-AÇÚCAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Aline Larissa et al. Production of recombinant lytic polysaccharide monooxygenases and evaluation effect of its addition into Aspergillus fumigatus var. niveus cocktail for sugarcane bagasse saccharification. Biochimica et biophysica acta-proteins and proteomics, v. 1871, n. 4, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.bbapap.2023.140919. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, A. L., Cunha, P. M., Lima, A. S., Santos, J. C. dos, & Segato, F. (2023). Production of recombinant lytic polysaccharide monooxygenases and evaluation effect of its addition into Aspergillus fumigatus var. niveus cocktail for sugarcane bagasse saccharification. Biochimica et biophysica acta-proteins and proteomics, 1871( 4), 1-12. doi:10.1016/j.bbapap.2023.140919
    • NLM

      Gonçalves AL, Cunha PM, Lima AS, Santos JC dos, Segato F. Production of recombinant lytic polysaccharide monooxygenases and evaluation effect of its addition into Aspergillus fumigatus var. niveus cocktail for sugarcane bagasse saccharification [Internet]. Biochimica et biophysica acta-proteins and proteomics. 2023 ; 1871( 4): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.bbapap.2023.140919
    • Vancouver

      Gonçalves AL, Cunha PM, Lima AS, Santos JC dos, Segato F. Production of recombinant lytic polysaccharide monooxygenases and evaluation effect of its addition into Aspergillus fumigatus var. niveus cocktail for sugarcane bagasse saccharification [Internet]. Biochimica et biophysica acta-proteins and proteomics. 2023 ; 1871( 4): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.bbapap.2023.140919
  • Source: Road Materials and Pavement Design. Unidades: EP, EEL

    Subjects: ANÁLISE TÉRMICA, REOLOGIA, BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Maria José Castro et al. Physicochemical and aging characterisation of bio-binders from pine wood resin for paving applications. Road Materials and Pavement Design, v. 24, p. 1-16, 2023Tradução . . Disponível em: https://doi.org/10.1080/14680629.2023.2180306. Acesso em: 17 nov. 2024.
    • APA

      Alonso, M. J. C., Espinosa, L. V., Marcelino, P. R. F., Savasini, K. V., Santos, J. C. dos, Moraes, R., et al. (2023). Physicochemical and aging characterisation of bio-binders from pine wood resin for paving applications. Road Materials and Pavement Design, 24, 1-16. doi:10.1080/14680629.2023.2180306
    • NLM

      Alonso MJC, Espinosa LV, Marcelino PRF, Savasini KV, Santos JC dos, Moraes R, Silva SS da, Bernucci LLB. Physicochemical and aging characterisation of bio-binders from pine wood resin for paving applications [Internet]. Road Materials and Pavement Design. 2023 ;24 1-16.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/14680629.2023.2180306
    • Vancouver

      Alonso MJC, Espinosa LV, Marcelino PRF, Savasini KV, Santos JC dos, Moraes R, Silva SS da, Bernucci LLB. Physicochemical and aging characterisation of bio-binders from pine wood resin for paving applications [Internet]. Road Materials and Pavement Design. 2023 ;24 1-16.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/14680629.2023.2180306
  • Source: Lignocellulose Bioconversion Through White Biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KUMAR, Deepak e CHANDEL, Anuj Kumar e SINGH, Lakhveer. Techno-economic Analysis of Bioconversion of Woody Biomass to Ethanol. Lignocellulose Bioconversion Through White Biotechnology. Tradução . [S.l.]: John Wiley & Sons, Ltd., Chichester, 2022. p. 312-326. Disponível em: https://doi.org/10.1002/9781119735984.ch13. Acesso em: 17 nov. 2024.
    • APA

      Kumar, D., Chandel, A. K., & Singh, L. (2022). Techno-economic Analysis of Bioconversion of Woody Biomass to Ethanol. In Lignocellulose Bioconversion Through White Biotechnology (p. 312-326). John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch13
    • NLM

      Kumar D, Chandel AK, Singh L. Techno-economic Analysis of Bioconversion of Woody Biomass to Ethanol [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 312-326.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch13
    • Vancouver

      Kumar D, Chandel AK, Singh L. Techno-economic Analysis of Bioconversion of Woody Biomass to Ethanol [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 312-326.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch13
  • Source: Lignocellulose Bioconversion Through White Biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHANDEL, Anuj Kumar et al. White Biotechnology: Impeccable Role in Sustainable Bio-Economy. Lignocellulose Bioconversion Through White Biotechnology. Tradução . [S.l.]: John Wiley & Sons, Ltd., Chichester, 2022. p. 1-17. Disponível em: https://doi.org/10.1002/9781119735984.ch1. Acesso em: 17 nov. 2024.
    • APA

      Chandel, A. K., Ascencio, J. J., Singh, A. K., Hilares, R. T., Ramos, L., Gupta, R., et al. (2022). White Biotechnology: Impeccable Role in Sustainable Bio-Economy. In Lignocellulose Bioconversion Through White Biotechnology (p. 1-17). John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch1
    • NLM

      Chandel AK, Ascencio JJ, Singh AK, Hilares RT, Ramos L, Gupta R, Thirupathaiah Y, Jagavati S. White Biotechnology: Impeccable Role in Sustainable Bio-Economy [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 1-17.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch1
    • Vancouver

      Chandel AK, Ascencio JJ, Singh AK, Hilares RT, Ramos L, Gupta R, Thirupathaiah Y, Jagavati S. White Biotechnology: Impeccable Role in Sustainable Bio-Economy [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 1-17.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch1
  • Source: Lignocellulose Bioconversion Through White Biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAUDEL, Henrique M et al. Scale-up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles. Lignocellulose Bioconversion Through White Biotechnology. Tradução . [S.l.]: John Wiley & Sons, Ltd., Chichester, 2022. p. 289-310. Disponível em: https://doi.org/10.1002/9781119735984.ch12. Acesso em: 17 nov. 2024.
    • APA

      Baudel, H. M., Rodrigues, D. M., Diebold, E., & Chandel, A. K. (2022). Scale-up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles. In Lignocellulose Bioconversion Through White Biotechnology (p. 289-310). John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch12
    • NLM

      Baudel HM, Rodrigues DM, Diebold E, Chandel AK. Scale-up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 289-310.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch12
    • Vancouver

      Baudel HM, Rodrigues DM, Diebold E, Chandel AK. Scale-up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 289-310.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch12
  • Source: Bioengineered. Unidade: EEL

    Subjects: BIOTECNOLOGIA, FERMENTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUSCHONI, Uirajá Cayowa Magalhães et al. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications. Bioengineered, v. 13, n. 4, p. 9645-9661, 2022Tradução . . Disponível em: https://doi.org/10.1080/21655979.2022.2057760. Acesso em: 17 nov. 2024.
    • APA

      Ruschoni, U. C. M., Mera, A. E. M., Zamudio, L. H. B., Kumar, V., Taherzadeh, M. J., Garlapati, V. K., & Chandel, A. K. (2022). Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications. Bioengineered, 13( 4), 9645-9661. doi:10.1080/21655979.2022.2057760
    • NLM

      Ruschoni UCM, Mera AEM, Zamudio LHB, Kumar V, Taherzadeh MJ, Garlapati VK, Chandel AK. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications [Internet]. Bioengineered. 2022 ;13( 4): 9645-9661.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/21655979.2022.2057760
    • Vancouver

      Ruschoni UCM, Mera AEM, Zamudio LHB, Kumar V, Taherzadeh MJ, Garlapati VK, Chandel AK. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications [Internet]. Bioengineered. 2022 ;13( 4): 9645-9661.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/21655979.2022.2057760
  • Source: Laser Physics Letters. Unidade: IFSC

    Subjects: COVID-19, TERAPIA FOTODINÂMICA, BIOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Lucas Danilo et al. Perspectives on photobiomodulation and combined light-based therapies for rehabilitation of patients after COVID-19 recovery. Laser Physics Letters, v. 19, n. 4, p. 045604-1- 045604-9, 2022Tradução . . Disponível em: https://doi.org/10.1088/1612-202X/ac52f5. Acesso em: 17 nov. 2024.
    • APA

      Dias, L. D., Blanco, K. C., De Faria, C. M. G., Dozza, C., Zanchin, E. M., Paolillo, F. R., et al. (2022). Perspectives on photobiomodulation and combined light-based therapies for rehabilitation of patients after COVID-19 recovery. Laser Physics Letters, 19( 4), 045604-1- 045604-9. doi:10.1088/1612-202X/ac52f5
    • NLM

      Dias LD, Blanco KC, De Faria CMG, Dozza C, Zanchin EM, Paolillo FR, Zampieri KR, Laurenti KC, Souza KJO, Bruno J da SA, Sene-Fiorese M, Pinto MCC, Tamae PE, Bello LT, Lizarelli R de FZ, Panhóca VH, Aquino Junior AE de, Bagnato VS. Perspectives on photobiomodulation and combined light-based therapies for rehabilitation of patients after COVID-19 recovery [Internet]. Laser Physics Letters. 2022 ; 19( 4): 045604-1- 045604-9.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1088/1612-202X/ac52f5
    • Vancouver

      Dias LD, Blanco KC, De Faria CMG, Dozza C, Zanchin EM, Paolillo FR, Zampieri KR, Laurenti KC, Souza KJO, Bruno J da SA, Sene-Fiorese M, Pinto MCC, Tamae PE, Bello LT, Lizarelli R de FZ, Panhóca VH, Aquino Junior AE de, Bagnato VS. Perspectives on photobiomodulation and combined light-based therapies for rehabilitation of patients after COVID-19 recovery [Internet]. Laser Physics Letters. 2022 ; 19( 4): 045604-1- 045604-9.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1088/1612-202X/ac52f5
  • Source: Lignocellulose Bioconversion Through White Biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVEIRA, Marcos Henrique Luciano et al. Lignin Conversion though Biological and Chemical Routes and Potential Chemicals. Lignocellulose Bioconversion Through White Biotechnology. Tradução . [S.l.]: John Wiley & Sons, Ltd., Chichester, 2022. p. 248-258. Disponível em: https://doi.org/10.1002/9781119735984.ch10. Acesso em: 17 nov. 2024.
    • APA

      Silveira, M. H. L., Mera, A. E. M., Ribeiro, E. A., & Chandel, A. K. (2022). Lignin Conversion though Biological and Chemical Routes and Potential Chemicals. In Lignocellulose Bioconversion Through White Biotechnology (p. 248-258). John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch10
    • NLM

      Silveira MHL, Mera AEM, Ribeiro EA, Chandel AK. Lignin Conversion though Biological and Chemical Routes and Potential Chemicals [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 248-258.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch10
    • Vancouver

      Silveira MHL, Mera AEM, Ribeiro EA, Chandel AK. Lignin Conversion though Biological and Chemical Routes and Potential Chemicals [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 248-258.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch10
  • Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHANDEL, Anuj Kumar. Lignocellulose Bioconversion Through White Biotechnology. . [S.l.]: John Wiley & Sons, Ltd., Chichester. Disponível em: https://doi.org/10.1002/9781119735984.ch1. Acesso em: 17 nov. 2024. , 2022
    • APA

      Chandel, A. K. (2022). Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch1
    • NLM

      Chandel AK. Lignocellulose Bioconversion Through White Biotechnology [Internet]. 2022 ;[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch1
    • Vancouver

      Chandel AK. Lignocellulose Bioconversion Through White Biotechnology [Internet]. 2022 ;[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984.ch1
  • Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHANDEL, Anuj Kumar. Lignocellulose Bioconversion Through White Biotechnology. . [S.l.]: John Wiley & Sons, Ltd., Chichester. Disponível em: https://doi.org/10.1002/9781119735984. Acesso em: 17 nov. 2024. , 2022
    • APA

      Chandel, A. K. (2022). Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984
    • NLM

      Chandel AK. Lignocellulose Bioconversion Through White Biotechnology [Internet]. 2022 ;402 .[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984
    • Vancouver

      Chandel AK. Lignocellulose Bioconversion Through White Biotechnology [Internet]. 2022 ;402 .[citado 2024 nov. 17 ] Available from: https://doi.org/10.1002/9781119735984
  • Source: Frontiers in bioengineering and biotechnology. Unidade: EEL

    Subjects: BIOTECNOLOGIA, CANA-DE-AÇÚCAR, ANTIOXIDANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Veronica Távilla F. et al. Xylan, Xylooligosaccharides, and Aromatic Structures With Antioxidant Activity Released by Xylanase Treatment of Alkaline-Sulfite?Pretreated Sugarcane Bagasse. Frontiers in bioengineering and biotechnology, v. 10, n. 940712, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.3389/fbioe.2022.940712. Acesso em: 17 nov. 2024.
    • APA

      Silva, V. T. F., Ruschoni, U. C. M., Ferraz, A. L., & Milagres , A. M. F. (2022). Xylan, Xylooligosaccharides, and Aromatic Structures With Antioxidant Activity Released by Xylanase Treatment of Alkaline-Sulfite?Pretreated Sugarcane Bagasse. Frontiers in bioengineering and biotechnology, 10( 940712), 1-10. doi:10.3389/fbioe.2022.940712
    • NLM

      Silva VTF, Ruschoni UCM, Ferraz AL, Milagres AMF. Xylan, Xylooligosaccharides, and Aromatic Structures With Antioxidant Activity Released by Xylanase Treatment of Alkaline-Sulfite?Pretreated Sugarcane Bagasse. [Internet]. Frontiers in bioengineering and biotechnology. 2022 ;10( 940712): 1-10.[citado 2024 nov. 17 ] Available from: https://doi.org/10.3389/fbioe.2022.940712
    • Vancouver

      Silva VTF, Ruschoni UCM, Ferraz AL, Milagres AMF. Xylan, Xylooligosaccharides, and Aromatic Structures With Antioxidant Activity Released by Xylanase Treatment of Alkaline-Sulfite?Pretreated Sugarcane Bagasse. [Internet]. Frontiers in bioengineering and biotechnology. 2022 ;10( 940712): 1-10.[citado 2024 nov. 17 ] Available from: https://doi.org/10.3389/fbioe.2022.940712
  • Source: Carbohydrate Polymers. Unidades: IQSC, EEL, IFSC

    Subjects: BIOTECNOLOGIA, PREBIÓTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VACILOTTO, Milena Moreira et al. Paludibacter propionicigenes GH10 xylanase as a tool for enzymatic xylooligosaccharides production from heteroxylans. Carbohydrate Polymers, v. 275, n. Ja 2022, p. 118684-1-118684-12, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2021.118684. Acesso em: 17 nov. 2024.
    • APA

      Vacilotto, M. M., Pellegrini, V. de O. A., Sepulchro, A. G. V., Capetti, C. C. de M., Curvelo, A. A. da S., Marcondes, W. F., et al. (2022). Paludibacter propionicigenes GH10 xylanase as a tool for enzymatic xylooligosaccharides production from heteroxylans. Carbohydrate Polymers, 275( Ja 2022), 118684-1-118684-12. doi:10.1016/j.carbpol.2021.118684
    • NLM

      Vacilotto MM, Pellegrini V de OA, Sepulchro AGV, Capetti CC de M, Curvelo AA da S, Marcondes WF, Arantes V, Polikarpov I. Paludibacter propionicigenes GH10 xylanase as a tool for enzymatic xylooligosaccharides production from heteroxylans [Internet]. Carbohydrate Polymers. 2022 ; 275( Ja 2022): 118684-1-118684-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.carbpol.2021.118684
    • Vancouver

      Vacilotto MM, Pellegrini V de OA, Sepulchro AGV, Capetti CC de M, Curvelo AA da S, Marcondes WF, Arantes V, Polikarpov I. Paludibacter propionicigenes GH10 xylanase as a tool for enzymatic xylooligosaccharides production from heteroxylans [Internet]. Carbohydrate Polymers. 2022 ; 275( Ja 2022): 118684-1-118684-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.carbpol.2021.118684
  • Source: Carbohydrate Polymers. Unidades: IB, FFCLRP, FMRP, FCFRP

    Subjects: PLANTAS VASCULARES, FUNGOS, OLIGOSSACARÍDEOS, BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARNEIRO, Lara Aparecida Buffoni de Campos et al. Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli. Carbohydrate Polymers, v. 284, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2022.119150. Acesso em: 17 nov. 2024.
    • APA

      Carneiro, L. A. B. de C., Fuzo, C. A., Meleiro, L. P., Carli, S., Barreto, M. Q., Lourenzoni, M. R., et al. (2022). Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli. Carbohydrate Polymers, 284. doi:10.1016/j.carbpol.2022.119150
    • NLM

      Carneiro LAB de C, Fuzo CA, Meleiro LP, Carli S, Barreto MQ, Lourenzoni MR, Buckeridge M, Ward RJ. Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli [Internet]. Carbohydrate Polymers. 2022 ; 284[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.carbpol.2022.119150
    • Vancouver

      Carneiro LAB de C, Fuzo CA, Meleiro LP, Carli S, Barreto MQ, Lourenzoni MR, Buckeridge M, Ward RJ. Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli [Internet]. Carbohydrate Polymers. 2022 ; 284[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.carbpol.2022.119150

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024