Filtros : "2022" Limpar

Filtros



Refine with date range


  • Source: Journal of Singularities. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, FOLHEAÇÕES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ANÁLISE GLOBAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo e LOPES, Débora e SOTOMAYOR, Jorge. Critical principal singularities of hypersurfaces in Euclidean 4-spaces. Journal of Singularities, v. 25, p. 150-172, 2022Tradução . . Disponível em: https://doi.org/10.5427/jsing.2022.25i. Acesso em: 03 jan. 2026.
    • APA

      Garcia, R., Lopes, D., & Sotomayor, J. (2022). Critical principal singularities of hypersurfaces in Euclidean 4-spaces. Journal of Singularities, 25, 150-172. doi:10.5427/jsing.2022.25i
    • NLM

      Garcia R, Lopes D, Sotomayor J. Critical principal singularities of hypersurfaces in Euclidean 4-spaces [Internet]. Journal of Singularities. 2022 ; 25 150-172.[citado 2026 jan. 03 ] Available from: https://doi.org/10.5427/jsing.2022.25i
    • Vancouver

      Garcia R, Lopes D, Sotomayor J. Critical principal singularities of hypersurfaces in Euclidean 4-spaces [Internet]. Journal of Singularities. 2022 ; 25 150-172.[citado 2026 jan. 03 ] Available from: https://doi.org/10.5427/jsing.2022.25i
  • Source: Lobachevskii Journal of Mathematics. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, SUPERFÍCIES, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, R. e SOTOMAYOR, Jorge e SPINDOLA, Flausino Lucas Neves. Axial curvature cycles of surfaces immersed in R4. Lobachevskii Journal of Mathematics, v. 43, p. 78-97, 2022Tradução . . Disponível em: https://doi.org/10.1134/S1995080222040126. Acesso em: 03 jan. 2026.
    • APA

      Garcia, R., Sotomayor, J., & Spindola, F. L. N. (2022). Axial curvature cycles of surfaces immersed in R4. Lobachevskii Journal of Mathematics, 43, 78-97. doi:10.1134/S1995080222040126
    • NLM

      Garcia R, Sotomayor J, Spindola FLN. Axial curvature cycles of surfaces immersed in R4 [Internet]. Lobachevskii Journal of Mathematics. 2022 ; 43 78-97.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1134/S1995080222040126
    • Vancouver

      Garcia R, Sotomayor J, Spindola FLN. Axial curvature cycles of surfaces immersed in R4 [Internet]. Lobachevskii Journal of Mathematics. 2022 ; 43 78-97.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1134/S1995080222040126
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: FOLHEAÇÕES, GEOMETRIA SIMPLÉTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge. An encounter of classical differential geometry with dynamical systems in the realm of structural stability of principal curvature configurations. São Paulo Journal of Mathematical Sciences, v. 16, n. 1, p. 256–279, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00231-6. Acesso em: 03 jan. 2026.
    • APA

      Sotomayor, J. (2022). An encounter of classical differential geometry with dynamical systems in the realm of structural stability of principal curvature configurations. São Paulo Journal of Mathematical Sciences, 16( 1), 256–279. doi:10.1007/s40863-021-00231-6
    • NLM

      Sotomayor J. An encounter of classical differential geometry with dynamical systems in the realm of structural stability of principal curvature configurations [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 256–279.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1007/s40863-021-00231-6
    • Vancouver

      Sotomayor J. An encounter of classical differential geometry with dynamical systems in the realm of structural stability of principal curvature configurations [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 256–279.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1007/s40863-021-00231-6
  • Source: Lobachevskii Journal of Mathematics. Unidade: IME

    Subjects: FOLHEAÇÕES, VARIEDADES TOPOLÓGICAS DE DIMENSÃO 3, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge e LOPES, Débora e GARCIA, Ronaldo. Principal curvature lines near a partially umbilic point of codimension one. Lobachevskii Journal of Mathematics, v. 43, p. 162-181, 2022Tradução . . Disponível em: https://doi.org/10.1134/S1995080222040205. Acesso em: 03 jan. 2026.
    • APA

      Sotomayor, J., Lopes, D., & Garcia, R. (2022). Principal curvature lines near a partially umbilic point of codimension one. Lobachevskii Journal of Mathematics, 43, 162-181. doi:10.1134/S1995080222040205
    • NLM

      Sotomayor J, Lopes D, Garcia R. Principal curvature lines near a partially umbilic point of codimension one [Internet]. Lobachevskii Journal of Mathematics. 2022 ; 43 162-181.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1134/S1995080222040205
    • Vancouver

      Sotomayor J, Lopes D, Garcia R. Principal curvature lines near a partially umbilic point of codimension one [Internet]. Lobachevskii Journal of Mathematics. 2022 ; 43 162-181.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1134/S1995080222040205

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026