Principal curvature lines near a partially umbilic point of codimension one (2022)
- Authors:
- Autor USP: TELLO, JORGE MANUEL SOTOMAYOR - IME
- Unidade: IME
- DOI: 10.1134/S1995080222040205
- Subjects: FOLHEAÇÕES; VARIEDADES TOPOLÓGICAS DE DIMENSÃO 3; TEORIA DAS SINGULARIDADES
- Keywords: principal lines; principal line fields; partially umbilic point; principal configuration
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2022
- Source:
- Título: Lobachevskii Journal of Mathematics
- ISSN: 1995-0802
- Volume/Número/Paginação/Ano: v. 43, p. 162-181, 2022
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SOTOMAYOR, Jorge e LOPES, Débora e GARCIA, Ronaldo. Principal curvature lines near a partially umbilic point of codimension one. Lobachevskii Journal of Mathematics, v. 43, p. 162-181, 2022Tradução . . Disponível em: https://doi.org/10.1134/S1995080222040205. Acesso em: 26 dez. 2025. -
APA
Sotomayor, J., Lopes, D., & Garcia, R. (2022). Principal curvature lines near a partially umbilic point of codimension one. Lobachevskii Journal of Mathematics, 43, 162-181. doi:10.1134/S1995080222040205 -
NLM
Sotomayor J, Lopes D, Garcia R. Principal curvature lines near a partially umbilic point of codimension one [Internet]. Lobachevskii Journal of Mathematics. 2022 ; 43 162-181.[citado 2025 dez. 26 ] Available from: https://doi.org/10.1134/S1995080222040205 -
Vancouver
Sotomayor J, Lopes D, Garcia R. Principal curvature lines near a partially umbilic point of codimension one [Internet]. Lobachevskii Journal of Mathematics. 2022 ; 43 162-181.[citado 2025 dez. 26 ] Available from: https://doi.org/10.1134/S1995080222040205 - Differential equations of classical geometry, a qualitative theory
- Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed
- Lines of curvature on quadric hypersurfaces of ℝ4
- Surfaces around closed principal curvature lines, an inverse problem
- Axial curvature cycles of surfaces immersed in R4
- Lições de equações diferenciais ordinárias
- An encounter of classical differential geometry with dynamical systems in the realm of structural stability of principal curvature configurations
- Structural stability of asymtotic lines on surfaces immersed in R³
- Tori embedded in R-3 with dense principal lines
- Structural stability of constrained polynomial systems
Informações sobre o DOI: 10.1134/S1995080222040205 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
