Critical principal singularities of hypersurfaces in Euclidean 4-spaces (2022)
- Authors:
- Autor USP: TELLO, JORGE MANUEL SOTOMAYOR - IME
- Unidade: IME
- DOI: 10.5427/jsing.2022.25i
- Subjects: GEOMETRIA DIFERENCIAL; FOLHEAÇÕES; EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; ANÁLISE GLOBAL
- Keywords: Principal foliations; partially umbilic lines; critical singularities
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Singularities
- ISSN: 1949-2006
- Volume/Número/Paginação/Ano: v. 25, p. 150-172, 2022
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
GARCIA, Ronaldo e LOPES, Débora e SOTOMAYOR, Jorge. Critical principal singularities of hypersurfaces in Euclidean 4-spaces. Journal of Singularities, v. 25, p. 150-172, 2022Tradução . . Disponível em: https://doi.org/10.5427/jsing.2022.25i. Acesso em: 30 dez. 2025. -
APA
Garcia, R., Lopes, D., & Sotomayor, J. (2022). Critical principal singularities of hypersurfaces in Euclidean 4-spaces. Journal of Singularities, 25, 150-172. doi:10.5427/jsing.2022.25i -
NLM
Garcia R, Lopes D, Sotomayor J. Critical principal singularities of hypersurfaces in Euclidean 4-spaces [Internet]. Journal of Singularities. 2022 ; 25 150-172.[citado 2025 dez. 30 ] Available from: https://doi.org/10.5427/jsing.2022.25i -
Vancouver
Garcia R, Lopes D, Sotomayor J. Critical principal singularities of hypersurfaces in Euclidean 4-spaces [Internet]. Journal of Singularities. 2022 ; 25 150-172.[citado 2025 dez. 30 ] Available from: https://doi.org/10.5427/jsing.2022.25i - Differential equations of classical geometry, a qualitative theory
- Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed
- Lines of curvature on quadric hypersurfaces of ℝ4
- Surfaces around closed principal curvature lines, an inverse problem
- Axial curvature cycles of surfaces immersed in R4
- Lições de equações diferenciais ordinárias
- Structural stability of asymtotic lines on surfaces immersed in R³
- Tori embedded in R-3 with dense principal lines
- An encounter of classical differential geometry with dynamical systems in the realm of structural stability of principal curvature configurations
- Structural stability of constrained polynomial systems
Informações sobre o DOI: 10.5427/jsing.2022.25i (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3120257 - Critical princi... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
