Filtros : "2000" Limpar

Filtros



Refine with date range


  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e EXEL FILHO, Ruy e PICCIONE, Paolo. Partial representations and partial group algebras. Journal of Algebra, v. 226, n. 1, p. 505-532, 2000Tradução . . Disponível em: https://doi.org/10.1006/jabr.1999.8204. Acesso em: 03 jan. 2026.
    • APA

      Dokuchaev, M., Exel Filho, R., & Piccione, P. (2000). Partial representations and partial group algebras. Journal of Algebra, 226( 1), 505-532. doi:10.1006/jabr.1999.8204
    • NLM

      Dokuchaev M, Exel Filho R, Piccione P. Partial representations and partial group algebras [Internet]. Journal of Algebra. 2000 ; 226( 1): 505-532.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1006/jabr.1999.8204
    • Vancouver

      Dokuchaev M, Exel Filho R, Piccione P. Partial representations and partial group algebras [Internet]. Journal of Algebra. 2000 ; 226( 1): 505-532.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1006/jabr.1999.8204
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SEMI-RIEMANNIANA, GEOMETRIA GLOBAL, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo e SEMPALMIERI, Rosella. On the geodesical connectedness for a class of semi-Riemannian manifolds. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Giannoni, F., Piccione, P., & Sempalmieri, R. (2000). On the geodesical connectedness for a class of semi-Riemannian manifolds. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
    • NLM

      Giannoni F, Piccione P, Sempalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
    • Vancouver

      Giannoni F, Piccione P, Sempalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/9b373c5d-1468-4b1f-a92b-6494a407513b/1105933.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SUB-RIEMANNIANA, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. Variational aspects of the geodesic problem in sub-Riemannian geometry. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/0520f864-745b-4ad8-ac35-9402b99c972e/1095501.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Piccione, P., & Tausk, D. V. (2000). Variational aspects of the geodesic problem in sub-Riemannian geometry. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/0520f864-745b-4ad8-ac35-9402b99c972e/1095501.pdf
    • NLM

      Piccione P, Tausk DV. Variational aspects of the geodesic problem in sub-Riemannian geometry [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/0520f864-745b-4ad8-ac35-9402b99c972e/1095501.pdf
    • Vancouver

      Piccione P, Tausk DV. Variational aspects of the geodesic problem in sub-Riemannian geometry [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/0520f864-745b-4ad8-ac35-9402b99c972e/1095501.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo. Time minimizing trajectories in Lorentzian geometry: the general-relativistic Brachistochrone problem. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/cb2ddcd6-8a5f-4b37-8416-67f5315fd095/1105201.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Piccione, P. (2000). Time minimizing trajectories in Lorentzian geometry: the general-relativistic Brachistochrone problem. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/cb2ddcd6-8a5f-4b37-8416-67f5315fd095/1105201.pdf
    • NLM

      Piccione P. Time minimizing trajectories in Lorentzian geometry: the general-relativistic Brachistochrone problem [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/cb2ddcd6-8a5f-4b37-8416-67f5315fd095/1105201.pdf
    • Vancouver

      Piccione P. Time minimizing trajectories in Lorentzian geometry: the general-relativistic Brachistochrone problem [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/cb2ddcd6-8a5f-4b37-8416-67f5315fd095/1105201.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo. The arrival time brachistochrones in general relativity. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Giannoni, F., & Piccione, P. (2000). The arrival time brachistochrones in general relativity. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
    • NLM

      Giannoni F, Piccione P. The arrival time brachistochrones in general relativity [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
    • Vancouver

      Giannoni F, Piccione P. The arrival time brachistochrones in general relativity [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/95ae1030-5428-4174-999f-e2f5e5c1abbd/1095415.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SUB-RIEMANNIANA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2000). Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
    • NLM

      Giambó R, Giannoni F, Piccione P. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Existence multiplicity and regularity for sub-Riemannian geodesics by variational methods [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/f142b0be-a3b7-48d0-968a-43d54d86ca7a/1105977.pdf
  • Conference titles: Escola de Geometria Diferencial. Unidade: IME

    Assunto: GRUPOS SIMPLÉTICOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. On the geometry of Grassmannians and the symplectic group: the Maslov index and its applications. . Rio de Janeiro: UFF. . Acesso em: 03 jan. 2026. , 2000
    • APA

      Piccione, P., & Tausk, D. V. (2000). On the geometry of Grassmannians and the symplectic group: the Maslov index and its applications. Rio de Janeiro: UFF.
    • NLM

      Piccione P, Tausk DV. On the geometry of Grassmannians and the symplectic group: the Maslov index and its applications. 2000 ;[citado 2026 jan. 03 ]
    • Vancouver

      Piccione P, Tausk DV. On the geometry of Grassmannians and the symplectic group: the Maslov index and its applications. 2000 ;[citado 2026 jan. 03 ]
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo e TAUSK, Daniel Victor. Morse theory for the travel time brachistochrones in stationary spacetimes. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Giannoni, F., Piccione, P., & Tausk, D. V. (2000). Morse theory for the travel time brachistochrones in stationary spacetimes. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
    • NLM

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
    • Vancouver

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/d7bacc0e-5e93-4561-b671-efc08d44f34e/1095519.pdf
  • Source: Journal of Geometry and Physics. Unidade: IME

    Assunto: TEORIA DE MORSE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e MASIELLO, Antonio. A Morse theory for massive particles and photons in general relativity. Journal of Geometry and Physics, v. 35, n. 1, p. 1-34, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0393-0440(99)00045-5. Acesso em: 03 jan. 2026.
    • APA

      Giannoni, F., & Masiello, A. (2000). A Morse theory for massive particles and photons in general relativity. Journal of Geometry and Physics, 35( 1), 1-34. doi:10.1016/s0393-0440(99)00045-5
    • NLM

      Giannoni F, Masiello A. A Morse theory for massive particles and photons in general relativity [Internet]. Journal of Geometry and Physics. 2000 ; 35( 1): 1-34.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/s0393-0440(99)00045-5
    • Vancouver

      Giannoni F, Masiello A. A Morse theory for massive particles and photons in general relativity [Internet]. Journal of Geometry and Physics. 2000 ; 35( 1): 1-34.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/s0393-0440(99)00045-5
  • Source: Journal of Geometry and Physics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A Morse theory for massive particles and photon in general relativity. Journal of Geometry and Physics, v. 35, n. 1, p. 1-34, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0393-0440(99)00045-5. Acesso em: 03 jan. 2026.
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (2000). A Morse theory for massive particles and photon in general relativity. Journal of Geometry and Physics, 35( 1), 1-34. doi:10.1016/s0393-0440(99)00045-5
    • NLM

      Giannoni F, Masiello A, Piccione P. A Morse theory for massive particles and photon in general relativity [Internet]. Journal of Geometry and Physics. 2000 ; 35( 1): 1-34.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/s0393-0440(99)00045-5
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A Morse theory for massive particles and photon in general relativity [Internet]. Journal of Geometry and Physics. 2000 ; 35( 1): 1-34.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/s0393-0440(99)00045-5
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SUB-RIEMANNIANA, GEOMETRIA SIMPLÉTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. Lagrangian and Hamiltonian formalism for constrained variational problems. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/aa37ad80-bdc6-47a0-b150-d2662c4ba0e0/1095509.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Piccione, P., & Tausk, D. V. (2000). Lagrangian and Hamiltonian formalism for constrained variational problems. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/aa37ad80-bdc6-47a0-b150-d2662c4ba0e0/1095509.pdf
    • NLM

      Piccione P, Tausk DV. Lagrangian and Hamiltonian formalism for constrained variational problems [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/aa37ad80-bdc6-47a0-b150-d2662c4ba0e0/1095509.pdf
    • Vancouver

      Piccione P, Tausk DV. Lagrangian and Hamiltonian formalism for constrained variational problems [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/aa37ad80-bdc6-47a0-b150-d2662c4ba0e0/1095509.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA, GRUPOS DE LIE, GEOMETRIA DE GEODÉSICAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio et al. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Giannoni, F., Masiello, A., Piccione, P., & Tausk, D. V. (2000). A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
    • NLM

      Giannoni F, Masiello A, Piccione P, Tausk DV. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
    • Vancouver

      Giannoni F, Masiello A, Piccione P, Tausk DV. A generalized index theorem for Morse-Sturm systems and applications to semi-Riemannian geometry [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/1c513aa0-fa31-47ee-a538-c5ca2356a7c1/1105922.pdf
  • Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS, GEOMETRIA GLOBAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. The Maslov index and a generalized Morse index theorem for non positive definite metrics. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/cc803f9e-8c95-4d1e-ae57-9a13426e14ce/1105206.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Piccione, P., & Tausk, D. V. (2000). The Maslov index and a generalized Morse index theorem for non positive definite metrics. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/cc803f9e-8c95-4d1e-ae57-9a13426e14ce/1105206.pdf
    • NLM

      Piccione P, Tausk DV. The Maslov index and a generalized Morse index theorem for non positive definite metrics [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/cc803f9e-8c95-4d1e-ae57-9a13426e14ce/1105206.pdf
    • Vancouver

      Piccione P, Tausk DV. The Maslov index and a generalized Morse index theorem for non positive definite metrics [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/cc803f9e-8c95-4d1e-ae57-9a13426e14ce/1105206.pdf
  • Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS DE SOBOLEV, ANÁLISE GLOBAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. On the Banach differential structure for sets of maps on non-compact domains. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/ab145cfd-f744-4c1e-8ec3-f876f8f048bb/1105208.pdf. Acesso em: 03 jan. 2026. , 2000
    • APA

      Piccione, P., & Tausk, D. V. (2000). On the Banach differential structure for sets of maps on non-compact domains. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/ab145cfd-f744-4c1e-8ec3-f876f8f048bb/1105208.pdf
    • NLM

      Piccione P, Tausk DV. On the Banach differential structure for sets of maps on non-compact domains [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/ab145cfd-f744-4c1e-8ec3-f876f8f048bb/1105208.pdf
    • Vancouver

      Piccione P, Tausk DV. On the Banach differential structure for sets of maps on non-compact domains [Internet]. 2000 ;[citado 2026 jan. 03 ] Available from: https://repositorio.usp.br/directbitstream/ab145cfd-f744-4c1e-8ec3-f876f8f048bb/1105208.pdf
  • Source: Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo. Existence of geodesics in static Lorentzian manifolds with convex boundary. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, v. 130, p. 189-215, 2000Tradução . . Disponível em: https://doi.org/10.1017/S030821050000010X. Acesso em: 03 jan. 2026.
    • APA

      Piccione, P. (2000). Existence of geodesics in static Lorentzian manifolds with convex boundary. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 130, 189-215. doi:10.1017/S030821050000010X
    • NLM

      Piccione P. Existence of geodesics in static Lorentzian manifolds with convex boundary [Internet]. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 2000 ; 130 189-215.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1017/S030821050000010X
    • Vancouver

      Piccione P. Existence of geodesics in static Lorentzian manifolds with convex boundary [Internet]. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 2000 ; 130 189-215.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1017/S030821050000010X
  • Source: Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. The Maslov index and a generalized Morse index theorem for non-positive definite metrics. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, v. 331, n. 5, p. 385-389, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0764-4442(00)01630-x. Acesso em: 03 jan. 2026.
    • APA

      Piccione, P., & Tausk, D. V. (2000). The Maslov index and a generalized Morse index theorem for non-positive definite metrics. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 331( 5), 385-389. doi:10.1016/s0764-4442(00)01630-x
    • NLM

      Piccione P, Tausk DV. The Maslov index and a generalized Morse index theorem for non-positive definite metrics [Internet]. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 2000 ; 331( 5): 385-389.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/s0764-4442(00)01630-x
    • Vancouver

      Piccione P, Tausk DV. The Maslov index and a generalized Morse index theorem for non-positive definite metrics [Internet]. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 2000 ; 331( 5): 385-389.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/s0764-4442(00)01630-x
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e PICCIONE, Paolo e SAMPALMIERI, Rosella. On the geodesical connectedness for a class of semi-Riemannian manifolds. Journal of Mathematical Analysis and Applications, v. 252, n. 1, p. 444-476, 2000Tradução . . Disponível em: https://doi.org/10.1006/jmaa.2000.7103. Acesso em: 03 jan. 2026.
    • APA

      Giannoni, F., Piccione, P., & Sampalmieri, R. (2000). On the geodesical connectedness for a class of semi-Riemannian manifolds. Journal of Mathematical Analysis and Applications, 252( 1), 444-476. doi:10.1006/jmaa.2000.7103
    • NLM

      Giannoni F, Piccione P, Sampalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. Journal of Mathematical Analysis and Applications. 2000 ; 252( 1): 444-476.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1006/jmaa.2000.7103
    • Vancouver

      Giannoni F, Piccione P, Sampalmieri R. On the geodesical connectedness for a class of semi-Riemannian manifolds [Internet]. Journal of Mathematical Analysis and Applications. 2000 ; 252( 1): 444-476.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1006/jmaa.2000.7103
  • Source: Advances in Differential Equations. Unidade: IME

    Assunto: ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri e GIANNONI, Fábio e PICCIONE, Paolo. A variational problem for manifold valued functions. Advances in Differential Equations, v. 5, n. 1/3, p. 369-400, 2000Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.ade/1356651389. Acesso em: 03 jan. 2026.
    • APA

      Benci, V., Giannoni, F., & Piccione, P. (2000). A variational problem for manifold valued functions. Advances in Differential Equations, 5( 1/3), 369-400. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.ade/1356651389
    • NLM

      Benci V, Giannoni F, Piccione P. A variational problem for manifold valued functions [Internet]. Advances in Differential Equations. 2000 ; 5( 1/3): 369-400.[citado 2026 jan. 03 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1356651389
    • Vancouver

      Benci V, Giannoni F, Piccione P. A variational problem for manifold valued functions [Internet]. Advances in Differential Equations. 2000 ; 5( 1/3): 369-400.[citado 2026 jan. 03 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1356651389

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026