On turning black: into dark gray-optimization with the direct empirical linkage discovery and partition crossover (2022)
- Authors:
- Autor USP: TINÓS, RENATO - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1145/3512290.3528734
- Subjects: ALGORITMOS GENÉTICOS; ANÁLISE REAL; GRAFOS ALEATÓRIOS
- Keywords: Linkage learning; Model building; Empirical linkage learning; Genetic algorithms; Gray-box optimization; Dark gray box optimization
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '22)
- ISSN: 9781450392372
- Volume/Número/Paginação/Ano: p. 269-277, 2022
- Conference titles: The Genetic and Evolutionary Computation Conference (GECCO '22)
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PRZEWOZNICZEK, Michal Witold et al. On turning black: into dark gray-optimization with the direct empirical linkage discovery and partition crossover. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '22). New York: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1145/3512290.3528734. Acesso em: 17 fev. 2026. , 2022 -
APA
Przewozniczek, M. W., Tinós, R., Frej, B., & Komarnicki, M. M. (2022). On turning black: into dark gray-optimization with the direct empirical linkage discovery and partition crossover. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '22). New York: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1145/3512290.3528734 -
NLM
Przewozniczek MW, Tinós R, Frej B, Komarnicki MM. On turning black: into dark gray-optimization with the direct empirical linkage discovery and partition crossover [Internet]. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '22). 2022 ; 269-277.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1145/3512290.3528734 -
Vancouver
Przewozniczek MW, Tinós R, Frej B, Komarnicki MM. On turning black: into dark gray-optimization with the direct empirical linkage discovery and partition crossover [Internet]. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '22). 2022 ; 269-277.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1145/3512290.3528734 - Programação evolutiva com distribuição de mutações auto-adaptativa aplicada a redes neurais artificiais
- A new method for identification of recombining components in the generalized partition crossover
- Quasi-optimal recombination operator
- Artificial neural network based crossover for evolutionary algorithms
- Analyzing evolutionary algorithms for dynamic optimization problems based on the dynamical systems approach
- Use of self-organizing suppression and q-Gaussian mutation in artificial immune systems
- Diversity control in genetic algorithms for protein structure prediction
- An efficient implementation of iterative partial transcription for the traveling salesman problem
- Tolerância a falhas em robôs manipuladores cooperativos
- Analysing fitness landscape changes in evolutionary robots
Informações sobre o DOI: 10.1145/3512290.3528734 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
