Exploring urban factors with autoencoders: relationship between static and dynamic features (2025)
- Authors:
- USP affiliated authors: NONATO, LUIS GUSTAVO - ICMC ; LOZADA, XIMENA SOFIA POCCO - ICMC ; HASSAN, WAQAR - ICMC ; SALINAS, KARELIA ALEXANDRA VILCA - ICMC
- Unidade: ICMC
- DOI: 10.1109/SIBGRAPI67909.2025.11223351
- Subjects: VISUALIZAÇÃO; ANÁLISE DE DADOS; ESTATÍSTICA APLICADA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2025
- Source:
- Título: Proceedings
- ISSN: 2377-5416
- Conference titles: Conference on Graphics, Patterns and Images - SIBGRAPI
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
POCCO, Ximena et al. Exploring urban factors with autoencoders: relationship between static and dynamic features. 2025, Anais.. Piscataway: IEEE, 2025. Disponível em: https://doi.org/10.1109/SIBGRAPI67909.2025.11223351. Acesso em: 20 jan. 2026. -
APA
Pocco, X., Hassan, W., Salinas, K. A. V., Molchanov, V., & Nonato, L. G. (2025). Exploring urban factors with autoencoders: relationship between static and dynamic features. In Proceedings. Piscataway: IEEE. doi:10.1109/SIBGRAPI67909.2025.11223351 -
NLM
Pocco X, Hassan W, Salinas KAV, Molchanov V, Nonato LG. Exploring urban factors with autoencoders: relationship between static and dynamic features [Internet]. Proceedings. 2025 ;[citado 2026 jan. 20 ] Available from: https://doi.org/10.1109/SIBGRAPI67909.2025.11223351 -
Vancouver
Pocco X, Hassan W, Salinas KAV, Molchanov V, Nonato LG. Exploring urban factors with autoencoders: relationship between static and dynamic features [Internet]. Proceedings. 2025 ;[citado 2026 jan. 20 ] Available from: https://doi.org/10.1109/SIBGRAPI67909.2025.11223351 - A visual methodology to assess spatial graph vertex ordering algorithms
- Pitfalls in quantification assessment
- An efficient and accurate method for binary quantification
- CityHub: a library for urban data integration
- Modeling and predicting crimes in the city of São Paulo using graph neural networks
- Accurately quantifying under score variability
- DRIFT: a visual analytic tool for scientific literature exploration based on textual and image content
- LegalVis: exploring and inferring precedent citations in legal documents
- VoS: uma nova proposta de rendering volumétrico híbrido
- Explainable NLLP: advancements in explainable AI for natural legal language processing
Informações sobre o DOI: 10.1109/SIBGRAPI67909.2025.11223351 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas