Inductive models for structured output prediction of lncRNA-disease associations (2025)
- Authors:
- Autor USP: CERRI, RICARDO - ICMC
- Unidade: ICMC
- DOI: 10.1109/CIBCB66090.2025.11177093
- Subjects: APRENDIZADO COMPUTACIONAL; BIOINFORMÁTICA; COMPUTAÇÃO EVOLUTIVA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2025
- Source:
- Título: Proceedings
- Conference titles: IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology - CIBCB
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
NAKANO, Felipe Kenji et al. Inductive models for structured output prediction of lncRNA-disease associations. 2025, Anais.. Piscataway: IEEE, 2025. Disponível em: https://doi.org/10.1109/CIBCB66090.2025.11177093. Acesso em: 01 jan. 2026. -
APA
Nakano, F. K., Bertoni, L., Cerri, R., & Vens, C. (2025). Inductive models for structured output prediction of lncRNA-disease associations. In Proceedings. Piscataway: IEEE. doi:10.1109/CIBCB66090.2025.11177093 -
NLM
Nakano FK, Bertoni L, Cerri R, Vens C. Inductive models for structured output prediction of lncRNA-disease associations [Internet]. Proceedings. 2025 ;[citado 2026 jan. 01 ] Available from: https://doi.org/10.1109/CIBCB66090.2025.11177093 -
Vancouver
Nakano FK, Bertoni L, Cerri R, Vens C. Inductive models for structured output prediction of lncRNA-disease associations [Internet]. Proceedings. 2025 ;[citado 2026 jan. 01 ] Available from: https://doi.org/10.1109/CIBCB66090.2025.11177093 - ARM-stream: active recovery of miscategorizations in clustering-based data stream classifiers
- Comparative analysis of machine learning algorithms for identifying genetic markers linked to Alzheimer's disease
- Grammar-based evolutionary approaches for software effort estimation
- Redes neurais e algoritmos genéticos para problemas de classificação hierárquica multirrótulo
- Ensemble methods for selecting single nucleotide polymorphisms associated to rice phenotypes
- Ensemble multi-label classification using closed frequent labelsets and label taxonomies
- Identification and analysis of SNP markers associated with traits of interest in rice using machine learning methodology
- Sistema de alerta de risco de incêndio no Pantanal com previsão até 3 dias futuros
- Growing self-organizing maps for multi-label classification
- Semi-supervised predictive clustering trees for multi-label protein subcellular localization
Informações sobre o DOI: 10.1109/CIBCB66090.2025.11177093 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3273861.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
