What makes on-farm experimental data suitable for data-driven decision-making?: implications of trial design and spatial distribution of field data for machine learning models (2025)
- Authors:
- Autor USP: COLACO, ANDRE FREITAS - ESALQ
- Unidade: ESALQ
- DOI: 10.1007/s11119-025-10280-y
- Subjects: ANÁLISE ESTATÍSTICA DE DADOS; APRENDIZADO COMPUTACIONAL; CIÊNCIAS AGRÁRIAS; DELINEAMENTO EXPERIMENTAL; DISTRIBUIÇÃO ESPACIAL; MODELOS MATEMÁTICOS; TOMADA DE DECISÃO
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Precision Agriculture
- ISSN: 1385-2256
- Volume/Número/Paginação/Ano: v. 26, art. 85, p. 1-23, 2025
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: cc-by
-
ABNT
COLAÇO, André Freitas et al. What makes on-farm experimental data suitable for data-driven decision-making?: implications of trial design and spatial distribution of field data for machine learning models. Precision Agriculture, v. 26, p. 1-23, 2025Tradução . . Disponível em: https://doi.org/10.1007/s11119-025-10280-y. Acesso em: 28 dez. 2025. -
APA
Colaço, A. F., Bramley, R. G. V., Richetti, J., & Lawes, R. A. (2025). What makes on-farm experimental data suitable for data-driven decision-making?: implications of trial design and spatial distribution of field data for machine learning models. Precision Agriculture, 26, 1-23. doi:10.1007/s11119-025-10280-y -
NLM
Colaço AF, Bramley RGV, Richetti J, Lawes RA. What makes on-farm experimental data suitable for data-driven decision-making?: implications of trial design and spatial distribution of field data for machine learning models [Internet]. Precision Agriculture. 2025 ; 26 1-23.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s11119-025-10280-y -
Vancouver
Colaço AF, Bramley RGV, Richetti J, Lawes RA. What makes on-farm experimental data suitable for data-driven decision-making?: implications of trial design and spatial distribution of field data for machine learning models [Internet]. Precision Agriculture. 2025 ; 26 1-23.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s11119-025-10280-y - Efeito da adubação em doses variadas em pomares de laranjeiras ao longo de quatro safras
- Mobile terrestrial laser scanner for site-specific management in orange crop
- A first step towards data ecosystem design for AI in agriculture: a case study assessing variable importance for optimising nitrogen decision-making in wheat
- Within-field extrapolation away from a soil moisture probe using freely available satellite imagery and weather data
- Digital strategies for nitrogen management in grain production systems: lessons from multi-method assessment using on-farm experimentation
- Spatial variability in commercial orange groves. Part 1: canopy volume and height
- Spatial variability in commercial orange groves: Part 1: canopy volume and height
- The role of digital technologies in achieving sustainable agriculture
- Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield
- Agricultura de precisão
Informações sobre o DOI: 10.1007/s11119-025-10280-y (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3270937-What_makes_on-far... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
