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Abstract

Purpose On-farm experimentation (OFE) plays a key role in underpinning data-driven
agronomic decision-making. For example, machine learning (ML) models can predict opti-
mal nitrogen (N) fertiliser rates using trial crop responses alongside soil, plant, and climatic
data. However, it is unclear how different OFE strategies, trial designs, and their conse-
quences for the spatial distribution of field datasets, impact the development of such models.
This work sought to investigate how trial design influences spatial autocorrelation in OFE
data and the impact of this on model training. It was also of interest to explore whether tai-
loring OFE programs and ML models to specific regions might improve their performance
compared to those generated for large geographic areas.

Methods Using 21 N strip trials across Australia, ML models were developed to predict
optimal N rates under different scenarios of data autocorrelation and geographic coverage.
Results Spatial autocorrelation in OFE data had negligible impact on model performance.
At the same time, models trained with fewer non-correlated observations showed similar
performance to models trained with thousands of autocorrelated observations. This suggests
that less replicated field trials providing more independent observations might be prefer-
able — for their simplicity and pragmatism — to highly replicated, whole-field trials which
generate highly autocorrelated field data. The results also indicate that regional models may
perform better than global models.

Conclusion Overall, to improve both the quantity and quality of OFE data for ML models
used to underpin a mid-season N fertiliser decision, prioritising a greater number of simpler
experiments (less replicated strip or plot trials) across a region is likely to be more effective
than increasing field coverage of individual experiments using highly replicated whole-field
designs focused on field-specific models.
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Introduction

On-farm experimentation (OFE) may be characterised by large-scale field trials, often
monitored and implemented with the aid of precision agriculture (PA) technology such
as crop sensors, on-board yield monitors, guidance systems and variable rate technology
(Cook & Bramley, 1998, Lacoste et al. 2022). The information obtained from OFE helps
farmers understand how management practices affect system responses under specific field
conditions, determined by the site and season in which the experiments are conducted.
Consequently, this enables farmers to move away from generic agronomic recommenda-
tions and tailor their decision-making to the unique conditions of their farms. To achieve
this, we believe that OFE should be ‘farmer-centric’; that is, the experiments are typically
planned and conducted with close farmer engagement, often with some ‘specialist’ support
(Lacoste et al. 2022). This approach contrasts with trials primarily designed for ‘discovery
science,’ driven by the interests of scientists rather than practical outcomes aimed at on-farm
decision-making and farm business improvement. Typical examples of the use of OFE for
decision-making have been large-scale seed rate (e.g. Anselmi et al., 2021) or N fertilisation
trials (see references below).

Aside from promoting practical knowledge for farmers, irrespective of the degree of
actual farmer engagement, OFE has been identified as a key element in the development of
protocols for data-driven agronomic decision-making (Colago & Bramley, 2018; Lawes et
al., 2019; Bullock et al., 2019; Colago et al., 2021; Hegedus et al., 2023). When observa-
tions of crop responses to treatments or management practices are combined with measures
of other field variables — such as vegetation indices from sensors, soil characteristics, and
climatic data — machine learning (ML) models can be trained to predict an optimal man-
agement strategy based on a set of observed factors (e.g. Colago et al., 2021, 2024). In this
case, aside from providing data to support immediate decision-making, the OFE trials are
also critically used to build databases for model learning. Thus, a primary goal of OFE is
to produce empirical evidence of the optimal management through field experimentation,
which can then inform farmers and or be used to train AI models.

Recent research has explored various experimental designs used in OFE to achieve these
goals (Fig. 1). Strip trials are arguably the most common and easiest to implement (Fig. 1b).
In this design, adjacent parallel strips — one for each treatment — are implemented with a
width equivalent to one or multiple passes of field machinery. Such trials can either cover
the entire field with multiple replicates of each treatment (Panten & Bramley, 2012; Colaco
et al., 2020) or, more commonly, focus on a portion of the field using one or a few replicates
per treatment (Fig. 1b; Lawes & Bramley, 2012; Colago et al., 2024). In the latter case, the
location of the strips is determined using prior knowledge of the field’s spatial variability,
ensuring observations are collected across different zones within the same field (Fig. 1b).
For the analysis of the trial, the field data (yield monitor, remote sensing data, etc.) is aggre-
gated along the strip length, using multiple ‘experimental units’ (or areas of observation), to
allow pair-wise treatment comparison and other analysis along the strips (Fig. 1b; Lawes &
Bramley, 2012; Colago et al., 2024).

Another approach involves the use of large-scale plot designs (Fig. 1a and c). The size
of each plot is again determined by the width of the field machinery used for implementing
and harvesting the trial, with a typical plot length of several tens of meters. Although not
widely adopted by farmers, precision agriculture (PA)-based OFE research has increasingly
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a) Zoned-based plot trial b) Strip trial c) Highly replicated, plot-based trial
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Fig. 1 Examples of different on-farm trial designs. (a) A large-scale plot trial in which experimental units
are strategically distributed covering different zones within the field. (b) A strip trial crossing different
zones of the field with multiple experimental analytical units to aggregate data enabling analysis along
the length of strip. (¢) A large-scale, highly replicated, whole-field plot trial covering the entire area of the
field (¢). From left to right more data are generated, but with increasing levels of spatial autocorrelation
amongst these data

focused on highly replicated plot designs that cover the entire field area (Fig. 1c); a typi-
cal example is the whole-field ‘checkerboard’ fertiliser or seed rate trial to produce a map
of optimal input rate across the entire field either with or without randomisation (Cook &
Bramley, 1998; Kindred et al., 2015; Bullock et al., 2019; Trevisan et al. 2021). However, in
contrast to the whole-field designs, farmers often tend to prefer less replicated trials, where
treatment plots are strategically distributed across different zones of a field (Fig. 1a; Whelan
et al., 2012). Much like simple strip trials, these designs are favoured for their simplicity,
ease of analysis and implementation. Moreover, since the trial does not occupy the entire
field, the farmer can implement the trial while also executing a desired management deci-
sion in the rest of the field. This is critically important as the information about treatment
response obtained from the trial is specific to both the site and the season and so can inform
on-going management decisions such as those related to mid-season N application.
Clearly, farmers, advisors and researchers have a range of trial designs and analytical
approaches to choose from when it comes to planning an OFE. To make this choice, users
must consider the main purpose of the trial, implications for data analysis, operational fac-
tors, availability of resources and other practical implications. When trials are designed to
generate field data for developing ML models to aid management decisions, an important
question arises: Do different trial strategies significantly impact the quality and utility of
field data for model training? Generally, larger OFE areas favour the collection of a large
number of observations for model training. However, quantity does not necessarily equate
to quality. Data collected from the same field and from locations close to each other — for
example, across the area of a checkerboard trial (Fig. 1¢) or along the length of a strip trial
(Fig. 1b) — may exhibit high levels of autocorrelation. This means that neighbouring data
points could be redundant, contributing limited new information to the training of non-
spatial ML models. In fact, some studies report that such autocorrelation can hinder the
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training process of such models (Liu et al., 2022; Meyer et al., 2019). However, statisti-
cal and machine learning theory generally acknowledges that spatial autocorrelation in the
input or outcome variables does not necessarily lead to autocorrelated residuals — and it is
the spatial structure in the residuals that is most relevant for evaluating model adequacy
(Cressie, 1993). In other words, if a model is able to explain the spatial variability using
appropriate covariates and algorithms, then residual spatial autocorrelation may be minimal
or absent, and thus not a concern. This can be formally assessed by analysing residuals after
model fitting. Alternatively, if spatial autocorrelation is indeed regarded as problematic, one
possible strategy is to train models using fewer but more spatially independent observations
(scattered data as in Fig. 1a). However, such datasets may lack the volume needed to effec-
tively train modern ML models.

It is important to emphasise that this dilemma applies to non-spatial ML approaches.
However, the majority of ML applications explored for data-driven decision making in agri-
culture have been non-spatial; with clustering and regression analysis being typical exam-
ples (Chilingaryan et al., 2018; Liakos et al., 2018). While these non-spatial models can
be used site-specifically for PA purposes, they generally make no direct use of the spatial
information inherent in the data.

Another important factor that influences data quantity and variability is the combination
of data from multiple fields. On the one hand, some studies focus on field-specific ML mod-
els (Hegedus et al., 2023), despite the need for multiple trials over multiple years to capture
the field-specific effects of seasonal variability. Conversely, OFE networks spanning larger
geographical areas (district or region) may increase data variability to a point where a single
‘global’ model may not be effective (Colago et al., 2024). A solution may be an intermedi-
ate approach; that is, regional models produced by combining data from similar fields or
from within readily constrained geographical regions to limit data variability. Achieving the
right balance between these factors by matching OFE programs and trial designs to the data
requirements for modelling, are critical when it comes to developing ML-based frameworks
for agronomic decision-making informed by OFE data.

Recent research on OFE seems to have given little focus to these questions. Many OFE
studies focus on developing appropriate statistical tools to analyse the experimental results
per se, that is, the treatment response across the landscape (Lawes & Bramley, 2012; Cor-
doba et al., 2025); some even use geostatistical approaches for this (Bishop & Lark, 2006;
Panten & Bramley, 2011; Jin et al., 2021). Other studies that do employ OFE to build data-
bases to support the development of ML-based decision tools often do not address how the
OFE strategy influences the data generated and how this, in turn, affects the quality and
reliability of model training. Colago et al. (2024), for example, developed a data-driven
model for optimal N rate prediction using OFE data, and found that it could not outperform
the farmer prescription unless unlimited historical field data — a simulated ‘perfect data’
scenario — were available. While these authors did not mention the potential negative effect
of autocorrelation in their strip trial data for model learning and generalization, they hypoth-
esized that model regionalization could be investigated to improve model performance. In
other cases, authors have mentioned and recognized data autocorrelation in their analysis
(de Lara et al., 2023; Evans et al., 2020) but without evaluating its effect on ML model
performance.

In light of the above, the present research sought to promote understanding on how OFE
strategies and the spatial distribution of field data may affect the training and applicability of
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an ML model designed to predict optimal application rates of N fertiliser for wheat and bar-
ley crops. More specifically, the present study builds upon the work of Colaco et al. (2024)
and aimed to enhance the results achieved using their data-driven N decision model by
investigating two specific issues related to the spatial characteristics of OFE data. The first
and main goal of this research was to investigate the spatial autocorrelation of field data and
its influence (if any) on model learning and performance. To achieve this, autocorrelation
was assessed both in the original field data and in the residuals produced by the models. The
hypothesis to be tested was whether reduced data autocorrelation, using less replicated tri-
als, favours model learning and generalization. A second interest of this work was to explore
the role of the geographic extent of a model by comparing ‘global’ models (combining OFE
data within a large geographical area) and ‘regional’ models (with a subset of OFE trial data
from the same region). It was hypothesised that reducing the variability of useful covariates
— rainfall, temperature, etc. — through regionalisation may favour the model’s performance
when compared to a ‘global’ model. In other words, the benefits of restricting the region of
a model on a sensible biophysical basis was explored.

Materials and methods

This study used a structured database from OFE trials used in the work of Colago et al.
(2024). The data were obtained from N fertilisation strip trials in commercial wheat and bar-
ley fields conducted between 2018 and 2021 in different graingrowing regions of Australia.
The database contained target variables — ‘optimal N fertiliser rate’ and ‘grain yield’ — and
predictor variables, including on-farm sensor data, and off-farm data from public sources
such as satellite images and weather observations. These on-farm target and predictor vari-
ables were obtained along the length of the strip trials — every ten meters — and combined
with the off-farm data to train a random forest regression model as described by Colago et al.
(2024). Their main goal was to make predictions of optimal mid-season N application rates
based on the observed field conditions. For the present analysis of the effect of data auto-
correlation, an iterative data thinning process was performed through successive sampling
followed by re-modelling (see below). Thus, with each iteration, the distance between each
observation increased — simulating less replicated field trials — consequently reducing data
autocorrelation. Finally, regional models based on different data subgroups, obtained by
combining OFE trials through cluster analysis, were compared to the initial model, that is,
the one generated from the entire database. All data preparation, analysis, and visualization
steps were performed in Python using the Google-Colab platform.

On farm experiments and crop response database

Twenty-one on-farm N fertilisation experiments, thirteen in wheat and eight in barley, were
conducted between 2018 and 2021 in different grain growing areas in Australia (Table 1).
Each experiment consisted of N application strips similar to those shown in Fig. 2. Trials
were planned with close engagement with the farmer and designed to minimize the burden
of adopting OFE practices. In fact, in most cases, farmers were already using N-rich strips
to fine-tune their fertiliser management and so the most important research modification was
the inclusion of ‘zero’ strips (see below). Therefore, there was some variation in the specific
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Table 1 Site characteristics of the on-farm experimental program

Year Location ? Field n°of Clay con-  Growing Average  Average
size observations tent (%)°  season rain-  yield (t/ EONR
(ha) fall (mm) ¢ ha)9¢ (kg/
ha) ©
2018 Tarlee - SA! 64 254 38.8 181 5.0 87
2018 Woorak - VIC! 119 151 45.6 232 5.5 45
2018 Kalannie - WA! 227 97 15.2 232 35 56
2019 Tarlee - SA! 64 70 38.8 218 35 43
2019 Woorak - VIC! 119 152 45.6 237 4.7 130
2019 Kalannie - WA 357 80 17.2 194 22 85
2020 Narrabri - NSW! 183 159 434 261 5.4 39
2020 Tarlee - SA! 64 65 38.8 352 7.5 93
2020 Woorak - VIC? 232 167 36.2 290 4.2 87
2020 Kalannie - WA? 357 80 17.2 162 2.5 21
2019 Booleroo Centre 100 169 25.1 145 0.8 4
- SA!
2019 Urania - SA! 53 66 24.8 176 4.2 117
2019 Wharminda - SA! 31 60 11.4 179 4.0 65
2019 Tumby Bay - SA! 77 102 30.3 186 29 77
2019 Loxton - SA! 153 108 3.8 92 0.9 13
2020 Urania - SA! 53 66 24.8 330 5.1 38
2020 Booleroo Centre 86 104 24.2 343 4.8 29
- SA?
2020 Tumby Bay - SA> 41 79 254 195 23 44
2020 Loxton - SA! 153 108 3.8 194 2.1 24
2021 Booleroo Centre 100 134 25.1 217 2.3 9
-SA!
2021 Loxton - SA? 218 81 6.4 141 0.8 4

* The same numerical index for each location indicates that the same field was used in different years
® Average soil clay content at the 0.3 m depth layer obtained from soil sampling

¢ Rainfall between April and October sourced from the Australian Bureau of Meteorology (BOM, 2024)
using the nearest weather station from the field

4 Average yield measured from the N ‘rich’ treatment
¢ Average EONR (economically optimal N rate) obtained from the N strip trial data
SA — South Australia; VIC — Victoria; WA — Western Australia; NSW — New South Wales

design of each trial depending on the farmer equipment and farmer preference at each site.
In the majority of trials, the N strips were 24-36 m wide, equivalent to two or three header
widths. Typically, strips were positioned to run across ‘management zones’ determined
through analysis of available spatial data — previous yield maps, remotely sensed imagery
and electromagnetic soil survey data when available — coupled with the farmer knowledge
of the field. At, or soon after sowing, an N ‘rich’ strip was established with N applied at
approximately twice the normal farmer rate. Also, an N ‘zero’ strip was established with no
additional application of N beyond that applied at sowing; the remainder of the field was
fertilised according to normal farmer practice with the area adjacent to the strips used as the
‘normal field’ treatment. The experiments were harvested using a machine equipped with a
yield monitor, which recorded the yield harvested along each experimental strip, logged at
1 Hz, equivalent to every 1-2 m, approximately.
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Fig. 2 Example of a field experiment with ‘rich’ and ‘zero’ rates of nitrogen fertiliser application along
strips crossing different productivity zones in a commercial barley field in South Australia. For illustration
purposes, the yield monitor data shown as dark dots were thinned to allow better visualization. Also high-
lighted is a ‘moving window’ exemplifying the data grouping along the length of the experimental strip

N strip experiment Local regressions Database

rich zero field

— $ Moving EONR | Grainyield | Predictor
window ID kg/ha t/ha * variables
= _ 1 80 4.12
2 95 4.55
N rate — 3 50 3.70
i
$
. /Iﬁl
-
N rate
$
N n
N rate

Out of scale

* . : g1 .
@ Yield monitor data points Average grain yield obtained at the ‘field’ strip

Fig. 3 The approach for determining economically optimal nitrogen rates (EONR) and building the da-
tabase, where each row represents observations collected in a moving window along the length of the
experimental strips. Adapted from Colago et al. (2024).

The database was constructed from observations grouped every ten meters along the
length of each strip trial using a circular moving window of 50 m radius (Figs. 2 and 3);
note that the windows overlapped, and some data points were shared between neighbour-
ing windows. To obtain the main response variable — ‘optimal N rate (in kg/ha) — in each
moving window, a simple quadratic regression was generated between the applied N rate
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(x-axis) and the partial profitability obtained in each strip (y-axis). The 50 m radius of the
moving window was chosen to ensure sufficient data points were available for each regres-
sion analysis. Partial profitability was calculated by subtracting the cost of fertiliser from the
gross income obtained from production, with the optimal rate being the one that maximised
profitability (Fig. 3).

Some studies have taken a different approach to predicting optimal N rates using ML and
OFE. To avoid using a modelled value for the optimal N rate — derived from a simple qua-
dratic regression, as described above — as the target variable for model training, these stud-
ies instead use ML to generate the ‘actual’ response function, with applied N as one of the
predictor variables. They then retrieve the optimal N rate using an argmax optimization of a
profitability function derived from the ML response function (de Lara et al., 2023; Trevisan
et al., 2021; Tanaka et al., 2024). In contrast, the present study draws inspiration from the
approach of Lawes et al. (2019), which was developed using a simulated dataset, but applies
it to a real-field dataset under the constrains imposed by the pragmatic nature of the trials.
It assumes that the simple regression used to derive optimal N rates, but conducted many
times along the length of the strips, closely approximates ‘actual’ crop responses within
each field. This estimated response, generated using readily available on-farm equipment, is
then used as a reference against which an ML model can be trained. While this approach was
used in the previous study by Colago et al. (2024), it is acknowledged that the uncertainty
associated with the simple regression — particularly when based on limited variation in N
rates — can affect the final modelling outputs when such estimates are used as the response
variable. Therefore, additional analyses were conducted using grain yield from the ‘normal
field’ N application strip as the target variable, thereby avoiding the use of estimated values
as the response.

Predictor variables

In addition to the target variables described above, predictor variables were collected and
matched to the resolution of the regression analysis for optimal N rate. Therefore, observa-
tions within the 50 m radius of the moving window (Figs. 2 and 3) were averaged, also every
ten meters along each experiment. These predictor variables were collected from public
databases (such as satellite images and climate data) and using on farm sensors (such as
proximal reflectance sensors). These variables characterise the field history, in-season crop
status, soil and landscape features and weather (Table 2; further description is available in
Colago et al., 2024). Only variables that could be obtained at, or prior to the mid-stage of
the early vegetative development phase (crop stage GS-31 according to the classification of
Zadoks et al. 1974), when the decision on the amount of additional mid-season N fertiliser
to be applied should be made, were used.

Baseline modelling

Initial random forest models for prediction of the optimal N rate and grain yield were devel-
oped to serve as a baseline for comparison with other variations to be tested (described
below). To train and validate these models, an iterative process for spatial cross validation
was conducted following a 21-fold cross validation approach with each fold defined by one
experiment (Richetti et al., 2023). In each iteration, the data were divided into training and
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Table 2 Variables used for optimal N rate and grain yield prediction
Variable Description Source Used for  Used
optimal for grain
N rate yield
prediction prediction
NDVI re- N rate that maximised NDVI at GS-31 On farm trial and  yes no
sponse function  crop stage using a quadratic model be- Sentinel 2 satellites
recommendation tween NDVI and trial N rates
Historic yield Average yield from previous 3 to 4 years  On board yield yes yes
monitoring
NDVI (field) NDVI from the adjacent field area (‘field’ Sentinel 2 satellites yes yes
strip) at GS-31 crop stage
NDVI (zero) NDVI from the ‘zero’ strip at GS-31 crop Sentinel 2 satellites yes no
stage
NDVI (rich) NDVI from the ‘rich’ strip at GS-31 crop  Sentinel 2 satellites yes no
stage
Historic NDRE  95th NDRE percentile from historic Landsat 8 satellite  yes yes
(95th percentile) imagery
Historic NDRE  5th NDRE percentile from historic Landsat 8 satellite  yes yes
(5th percentile) ~ imagery
Rainfall Accumulated rainfall from sowing untii ~ BOM* yes yes
GS-31
Air temperature  Average daily max temperature from BOM? yes yes
sowing until GS-31
Land surface Model parameter of a sinusoid func- MODIS® yes yes
temperature tion fitted to a land surface temperature
(phase) dataset
Land surface Model parameter of a sinusoid func- MODIS® yes yes
temperature tion fitted to a land surface temperature
(amplitude) dataset
Gamma radio- K** radiometry from airborne gamma-ray Radiometric Grid  yes yes
metric (k) spectrometric survey of Australia®
Gamma radio- Th?? radiometry from airborne gamma-  Radiometric Grid ~ yes yes
metric (th) ray spectrometric survey of Australia®
Gamma radio- U?38 radiometry from airborne gamma- Radiometric Grid  yes yes
metric (u) ray spectrometric survey of Australia®
Soil clay content  Soil clay content at the top 0.3 m layer ASRIS¢ yes yes
Aspect Landscape attribute from digital elevation Digital El- yes yes
model evation Model of
Australia®
Slope Landscape attribute from digital elevation Digital El- yes yes
model evation Model of
Australia®
Hill shade Landscape attribute from digital elevation Digital El- yes yes
model evation Model of
Australia®

? Bureau of Meteorology (BOM, 2024)
b Retrieved using the approach of Jakubauskas and Legates (2000)

¢ Australian wide Gama radiometric survey (Poudjom & Minty, 2019)
4 Australian Soil Resource Information System (ASRIS, 2024)
¢ Wilson et al. (2011)
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testing sets, followed by modelling. In other words, to ensure independence between train-
ing and testing data, in each iteration, data from one experiment were reserved for testing,
and the remaining 20 experiments were used for training. Subsequently, a random forest
regression model was trained. Since the focus was on comparing models across a range of
scenarios, no fine-tuning was conducted. Therefore, the configuration (hyperparameters) to
train the models — number of trees, maximum depth of each tree, and node splitting rules —
was kept at the default values from the ‘sklearn’ package in Python. Finally, the model was
validated using the root mean squared error (RMSE). Twenty-one iterations were performed
— using all combinations of data splitting between the field trials.

Autocorrelation analysis

It is axiomatic that the characteristics of the field experiment and the data grouping along the
strip length lead to autocorrelation in the database, which may negatively affect the train-
ing of non-spatial ML models; note that each observation in the database represents data
grouped within a 50 m radius every 10 m along the length of the strip trial. Thus, an autocor-
relation analysis, using a correlogram, was conducted. The correlogram shows the correla-
tion between sequential data and the same data with a progressive lag, making it possible
to observe the lag level — or, in this case, the distance between points — that ensures ‘inde-
pendence’ (i.e., non-significant correlation) between the data. This analysis was performed
for grain yield and optimal N rate data. In each case, data from all strips were concatenated
into a single sequence ordered by spatial location along each strip. Although spatial continu-
ity across experiments was not explicitly modelled, this aggregation allowed for a general
assessment of autocorrelation structure in the dataset. To produce the correlograms, the
‘plot_acf” function from the ‘statsmodels’ library was used, and spatial autocorrelation was
visualized up to 80 lags. The function computes the sample autocorrelation at each lag and
plots confidence intervals (by default, 95%). These intervals are based on an approximate
normal distribution, with bounds set at + 1.96/\/11, where 7 is the number of observations.

In addition to the analysis of autocorrelation in the response variables, we also investi-
gated whether the autocorrelation present in the field data was retained in the residuals after
model fitting. Therefore, correlograms were also produced based on the residuals from the
optimal N rate and grain yield models.

Next, a data thinning strategy was used by sampling the training data to progressively
increase the distance between observations in the database and consequently decrease the
autocorrelation between them. It is important to note that the goal of this analysis was not to
test data filtering as a potential strategy to reduce data autocorrelation. Rather, it sought to
simulate data generated from simpler, less replicated trials, such as small strips or spatially
distributed plot-based trials (Fig. 1a), as opposed to highly replicated designs (Fig. 1c), for
example. Therefore, values of ¢ were defined as 1, 2, 10, 20, 30, 40, 50, and 60, with ¢ being
the ‘step’ size of the data sampling; that is, one observation was retained every g rows of the
database. An iterative process (for each ¢) was defined, where sampling of the database was
performed with step ¢, followed by a new iteration for spatial cross-validation. The same
approach as before was used where data from one experiment was used for validation and
the remaining twenty for training, with twenty-one iterations testing all combinations of
training and testing among the experiments. It is important to note that for all data sampling
scenarios, model validation was conducted using the original, un-thinned data — meaning
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the data from the validation trial was maintained at its original spatial resolution (every
10 m along the strips). This approach allowed the models to be evaluated in a scenario com-
patible with site-specific management (e.g., continuous variable rate fertiliser application),
even though they were developed using sparse, thinned data. For each iteration, a random
forest model was trained, again using the default hyperparameters of the ‘sklearn’ package
in Python. The RMSE was used as the evaluation metric, and Tukey’s test (at a 5% signifi-
cance level) was conducted to compare model performance across the different ¢ scenarios.
Additionally, residual autocorrelation was calculated at lag 1 for each ¢ scenario to assess
whether reducing spatial autocorrelation in the input data could also reduce residual auto-
correlation after model fitting.

Regionalisation analysis

In Table 1, it is noted that an OFE trial network was implemented in nine different loca-
tions spread across four states in Australia, namely Kalannie (WA), Booleroo Centre (SA),
Loxton (SA), Tarlee (SA), Tumby Bay (SA), Urania (SA), Wharminda (SA), Woorak (Vic),
and Narrabri (NSW), with the number of experiments per location varying between one
and three. In the initial modelling (baseline), the data were combined, and a ‘global’ model
— with data from all experiments — was generated and tested. This approach sought to maxi-
mize the amount of data used for training and validation. However, given the agroclimatic
differences between regions, data from Narrabri (NSW), for example, may have little to
contribute to a model applied about 3,500 km away in Kalannie (WA). Therefore, an attempt
was made to create sub-regions from the initial database and subsequently train and validate
models locally.

To do so, each location was characterised by the average observed yield and optimal N
rate across the experiments. Then, a cluster analysis using the k~-means algorithm was per-
formed. The ideal number of clusters was defined using an ‘elbow graph’ that depicts the
inertia value (the sum of squared distances between each point and the cluster centroid) for
a varied number of clusters. Once the nine locations were grouped, cluster information was
added to the initial database based on the location of each observation. Each subset of data
for each cluster was then used for training and validating ‘regional’ models. In each case,
the data were subdivided again between training and testing by separating an independent
experiment for testing. For example, if a cluster grouped data from Booleroo Centre - SA
and Loxton - SA, this dataset would comprise six experiments, three from each location
(Table 1). Thus, data from one experiment would be set aside for testing, and data from
the other five experiments would be used to train the model. In this example, six itera-
tions would have been performed to test all combinations of training and testing among the
available experiments. In each scenario, random forest models were trained again using the
default hyperparameters of the ‘sklearn’ package in Python, and the RMSE across the dif-
ferent iterations was used as the evaluation metric. Finally, the performance of the models
at each cluster were compared to the error obtained by the global model when applied to the
respective locations of each cluster. A t-test (at a 5% significance level) was used to statisti-
cally compare the local and global models within each cluster.

It is acknowledged that this clustering strategy, combined with the constraints of a lim-
ited number of available trials, may not produce geographically cohesive ‘regions’. How-
ever, it demonstrates a data-driven approach to defining ‘regions’ and allows this study
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to leverage the varying degrees of geographical cohesiveness in the resulting clusters to
interpret the findings.

Results
Baseline model

The results obtained for the initial modelling — a random forest model with all available
data — showed a prediction error (RMSE) on the test set of 1.60 t/ha for grain yield and 48.6
kg/ha for the optimal N rate which can be regarded as relatively high considering the aver-
age yields and optimal N rates obtained in each trial (Table 1). The first hypothesis of this
study was that the presence of autocorrelation in the training data was limiting the model’s
learning and generalization capacity. A second hypothesis was that the significant variability
observed among locations and experimental years (Table 1) made it challenging to generate
a single ‘global’ model capable of performing well in the different study regions.

Autocorrelation

The correlograms show the strong presence of autocorrelation in the field data, especially
for grain yield (Fig. 4). This result was expected since the data were collected sequentially
and in close proximity, every 10 m along the length of each experiment. In the case of grain
yield data, such autocorrelation is especially expected due to the operational principles and
dynamics involved in yield monitor data collection during harvest (Whelan & McBratney,
2002).The correlograms also indicate that non-significant autocorrelation is only achieved
when there is a shift in the data of around 50 to 70 lag for the optimal N rate and yield, rep-
resenting a distance between observations of 500 m to 700 m. In practice, this means that for
an experiment of 1500 m in length, as shown in Fig. 2 (representing a typical experiment in
this project), only around two to three observations would be independent, possibly coincid-
ing with one in each of the productivity zones of the field; noting that each observation here
represents data aggregated across a 50 m radius (Fig. 3).
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Fig. 4 Correlograms for optimal N rate and grain yield data. The blue background area represents 95%
confidence intervals
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The residuals obtained after fitting random forest models for optimal N rate prediction
exhibited low spatial autocorrelation (Fig. 5). This suggests that, despite the spatial struc-
ture present in the original data, the trained models were generally effective in capturing
the variability in this response variable. However, for grain yield — where the original data
showed higher spatial autocorrelation compared to optimal N rate (Fig. 4) — the residuals
still displayed some autocorrelation at short lags. This indicates that the stronger spatial
dependence in grain yield data was not fully accounted for by the model, suggesting some
degree of underperformance.

Figure 6 shows the effect of thinning the data on the prediction performance of grain
yield and optimal N rate using a random forest model. Overall, models performed similarly
across the various scenarios of data availability and autocorrelation. No statistically signifi-
cant differences were observed among the filtering scenarios for either model. These results
indicate that training a model using data with reduced autocorrelation — but with fewer data
— did not affect prediction accuracy, as originally hypothesised. It is also seen that, having
less data also did not lead to a loss of performance likely due to the variation in the dataset
being maintained despite the thinning process. In addition, these results reject a possible
alternative hypothesis that a larger dataset could improve model performance. As expected,
abundant data do not contribute to the model performance when strong autocorrelation is
present, as will inevitably be the case when highly replicated OFE designs are used.

The analysis of residual autocorrelation across the subsampling scenarios showed that,
for the optimal N rate models, it remained largely unaffected by changes in the subsampling
scenarios (Fig. 7). In contrast, grain yield prediction models appeared to have benefited
from reduced spatial autocorrelation in the field data — residual autocorrelation decreased
under sparser and less autocorrelated field data (Fig. 7) — leading to a slight improvement
(although not statistically significant) in predictive performance, as shown in Fig. 6.

Regionalisation

For the analysis of model regionalisation, the ideal number of clusters for grouping the nine
experimental sites based on yield and average optimal N rate data was first evaluated. The
elbow graph indicated that little improvement in the clustering quality occurred beyond
three clusters (Fig. 8). Thus, three clusters were used (Fig. 9). Overall, a relatively even
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Fig. 5 Correlograms of the residuals after model fitting for optimal N rate and grain yield data. The blue
background area represents 95% confidence intervals
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division in terms of data quantity was observed among the clusters; each cluster contained
data from six to eight experiments. The first cluster (A) consisted of the Booleroo Centre
and Loxton sites, totalling six experiments, three at each site. These sites are located in arid
regions of South Australia, albeit~300 km apart, typically characterized by low crop yield
and low demand for N fertiliser and in particular, low annual and growing season rainfall;
indeed the site at Booleroo Centre is north of Goyder’s line (Nidumolu et al. 2012). Cluster
B comprised a mix of sites with intermediate values of optimal N rate and yield, including
seven experiments spread across four locations states: Kalannie - WA, Tumby Bay and
Wharminda - SA, and Narrabri - NSW. The remaining three sites (Tarlee and Urania - SA,
and Woorak - VIC), with higher crop yield and optimal N rate, encompassing eight experi-
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Fig.8 Inertia (sum of squared distances between each point and the cluster centroid) for a varying number
of clusters during the clustering analysis of average yield and optimal N rate data from each experimental
site

ments, were grouped into cluster C. Generally, cluster A was the only one that showed some
cohesiveness, even though it could still be further refined with the availability of more OFE
data (region marked in red on the map, Fig. 9). Cluster C, in a more southern region of South
Australia and Victoria (region marked in blue on the map, Fig. 9), and especially Cluster
B, scattered around the continent, were much less sensible from an agronomic perspective.

Clustering the data reduced the model error for optimal N rate prediction only for cluster
A, from 23.9 kg/ha (RMSE obtained by the global model) to 18.4 kg/ha (RMSE obtained
by the regional model) (Fig. 10). Although this represents a reduction of approximately 5.5
kg/ha or 23%, the difference was not statistically significant according to Tukey’s test at
5% level. Overall, the difference in performance between the global model and the regional
model was very small for clusters B and C, showing a slight deterioration of performance
with clustering (Fig. 10). The results seem to make sense considering the characteristics of
each group. Cluster A showed greater coherence from a biophysical and agronomic per-
spective, representing locations in regions with consistently low yield potential and similar
limitations related to climate and soil characteristics. Cluster C, although including sites
with similar average yield potential and N demand (Fig. 9), had highly contrasting soil
and climate conditions in different locations. For instance, Urania - SA, located on Yorke
Peninsula (SA), experiences a strong influence of an oceanic climate with regular rainfall,
contrasting with Tarlee (SA) and Woorak (VIC) where the weather is much less locally
influenced by proximity to the sea. The soil in Urania (SA) also differs markedly from the
others, being more sandy, rocky, shallow, and calcareous, often with calcrete occurring at
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Fig.9 Clustering of nine experimental sites based on grain yield and optimal N rate

shallow depths. Therefore, the worse result for the regional model compared to the ‘global’
model is not surprising. Cluster B also did not show any regional or agronomic coherence as
it included distinct and geographically scattered locations; thus, it did not achieve positive
effects for modelling either.

Finally, to speculate on the potential benefit of further restricting the coverage of a model,
single location models were also tested. Models generated for Kalannie (WA), Tarlee (SA),
and Woorak (VIC), each with three experiments (2018, 2019, and 2020), did not result in
a reduction of error compared to the global model (data not shown). This indicates that,
despite the specificity of the models, in this case for a single location or farm, modelling was
not effective when based on limited data (only three seasons).

@ Springer



Precision Agriculture (2025) 26:85 Page 17 of 23 85

1209 =3 Global .
[ Regional (cluster)
100 A
©
<
<
g
o 997 T ° 75.12a
= 70.80a X
o X
b=
‘© 60
£
=
% 42.07 43.54a
.07a A e
X
B 40+ 1
=
e« [
20 X 18.46a
_1
A B C
Cluster

Fig. 10 Predictive performance of optimal N rate from regional models and a global model. The boxplots
indicate the error distribution across the different test sites during the cross validation. In each box, the
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inside the box indicates the median, and the cross indicates the mean. Whiskers indicate the lowest and
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whiskers are considered outliers. Mean values are accompanied by a letter indicating the t-test (5% sig-
nificance) results between global and regional models at each cluster

Discussion

Autocorrelation is a common characteristic of any OFE database, and for that matter, of
almost any agronomic dataset (Mcbratney and Pringle, 1999). It is also obvious that without
spatial autocorrelation (i.e. discernible spatial structure in within-field agronomic datas-
ets), there would be no case for the targeted management that is implicit in PA. While it
is accepted that autocorrelation needs to be avoided in inferential statistics — because it
violates the assumption of independence among observations (Lovell, 2013), leading to arti-
ficially narrow confidence intervals and lower p-values — this study aimed to assess whether
caution is also warranted when using autocorrelated databases to train ML models intended
to underpin agronomic decision-making. After all, autocorrelation may imply greater redun-
dancy in observations, potentially making extensive databases with autocorrelation less
effective than a small amount of non-correlated data. While some studies paid attention to
this factor in regard to model validation using spatial data splitting between training and test
sets (e.g. de Lara et al., 2023), they overlooked the autocorrelation still present in the train-
ing set which may affect model training.

In this study, models remained essentially unaffected by spatial autocorrelation in field
data; although a slight improvement was observed for grain yield prediction models using
thinned (ie less autocorrelated) data, the practical benefit is likely negligible. Overall, results
indicate that spatial autocorrelation present in OFE data may not be a major concern for
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ML training. Another important lesson was that models generated from a few independent
observations had a similar performance to those generated from thousands of autocorre-
lated observations. Similar results were obtained by Richetti et al. (2023). In that case, ML
yield prediction models were created from yield monitor data, and vegetation index and
climatic data as predictor variables, collected across nine fields in Australia. They found
that ML models produced using 5% of the data were as accurate as those based on the entire
database. It is acknowledged that, at first glance, these results may appear to contradict the
findings of Colago et al. (2024), who emphasised the importance of abundant data for model
performance. However, it is crucial to clarify that the data-abundant scenario in that study
was designed to represent a situation in which historical field data used to train the model
perfectly reflects the current field conditions where the model is applied. Therefore, in that
context, ‘abundance’ refers to the representativeness of the data, not simply its quantity.

In summary, the analysis of autocorrelation effects indicates that, since model perfor-
mance was generally maintained across the various scenarios of data availability and auto-
correlation, it can be concluded that the choice of an OFE trial design — which impacts on
both data availability and data autocorrelation — can primarily follow more pragmatic con-
siderations regarding practicality and utility of the OFE. Here, the results suggest that users
such as farmers, advisors or service providers developing data driven decision tools, can
opt for simpler trials such as strips (Fig. 1a) or less replicated plot-based trials (Fig. 1b) for
training ML models like the one developed here. Likewise, in choosing an approach to pro-
cess and analyse strip trial data, observations can be aggregated in steps greater than 10 m,
which seems sensible considering the typical width of a combine header and the effects of
so-called ‘convolution’ in yield monitor data (Whelan & McBratney, 2002). Although these
designs may generate fewer data than highly replicated whole-field trials (Fig. 1¢), they can
still provide sufficient data for ML training — especially when strategically distributed in
the field based on knowledge of management zone location. While the value of continuous
representation of crop response obtained from highly replicated whole-field trials is recog-
nised — especially for the learning potential it offers to farmers (Bullock et al., 2019; Cook
& Bramley, 1998; Hegedus et al., 2023; Lacoste et al., 2022) — its added value for develop-
ing data driven decision tools based on ML may be limited. It is therefore also worth noting
that an important limitation of whole-field designs is that a management decision arising
from the trial — e.g. how much top dress N fertiliser to apply — cannot be implemented in the
same season without it destroying the experiment, because the trial occupies the entire field
area. As a consequence, the farmer must choose between implementing a trial or executing
a management decision (Hegedus et al., 2023). If the additional data provided by these trials
do not add value to the modelling, as the results of this study demonstrate, such a dilemma
may not arise. A farmer can opt for smaller trials without compromising either the develop-
ment of a decision model or their desire for management optimization in a particular season.

With that said, the discussion above — and the potential concern regarding autocorrela-
tion — only applies to non-spatial ML approaches, which are predominant in PA applications
(Chilingaryan et al., 2018; Liakos et al., 2018). On the contrary, spatial autocorrelation
from whole-field trial data — and more precisely, the spatial variability it captures — is not
a concern at all and is actually key, when using convolutional neural networks (CNNs) or
other spatial ML approaches (Barbosa et al., 2020). However, the disadvantage of these
approaches is that the spatial patterns of a given field are only useful information for that
particular field. In other words, the limitation of CNNs, and other spatial approaches, lies
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in the fact that models will likely be field specific. The first problem that arises from such
an approach is the need to build many models, one for each field. Second, is the fact that
each field-specific model might require many years of data collection to capture seasonal
variability (Bullock et al., 2020). In contrast, models generated from databases that mix
data from different trials — using OFE networks — may capture ‘seasonal variability’ by the
fact that variables representing climatic conditions (for example water availability) can vary
between different fields in the same season. Further, field-specific databases collected over
several years tend to be less balanced in terms of the variation captured in each of the vari-
ables; that is, while on-farm sensor data varies continuously within a field, weather-related
variables often change only between seasons for any given field at the spatial resolution at
which they are available. For these reasons, a strategy that integrates less replicated trials
(i.e., fewer observations per field) with data from multiple fields can help create more bal-
anced datasets, which may be beneficial for model training. This aspect links to the question
of regionality in model development.

While some studies have tested models covering large geographical regions with limited
success (Colago et al., 2024), others focused on field specific approaches (Bullock et al.,
2020; Hegedus et al., 2023), which, as mentioned, may require several years of experimen-
tation until an effective model can be generated such that it is useful across a range of season
types. Here, an intermediate approach was tested in which OFE data from a few different
fields were grouped through cluster analysis before modelling. Results show that a model
for optimal N rate prediction generated and validated from two agronomically similar loca-
tions in the arid region of South Australia showed potential to outperform a more global
model built using data from all regions of Australia combined. Therefore, regionalisation
offers a pathway for improvement in model performance by limiting the variability in the
conditions under which the models are implemented. However, regionalisation must take
into account extensive agronomic and climatic knowledge for each location to group differ-
ent areas in the most coherent and relevant manner and here, we stress that our clustering of
sites (Fig. 9) was illustrative of an approach rather than intended to be definitive. In this con-
nection, it is accepted that our available dataset was probably inadequate for a more robust
regionalisation study, but we suggest that as a means of illustrating an approach, the present
work has been useful. Future studies with access to more OFE data could not only enhance
the approach used here but also explore alternative classification strategies that account for
both geographical and seasonal variability.

In summary, the combined analyses of data autocorrelation and model regionalization
suggest that to enhance both the quantity and quality of OFE data for ML models in the
development of data-driven approaches to more robust fertiliser decision-making, prioritis-
ing a larger number of less complex experiments (e.g., less replicated strip or plot trials)
across reasonably similar locations is likely more effective than increasing spatial cover-
age within individual experiments (e.g., highly replicated whole-field designs) focussed on
field specific models. This approach is also more likely to be accepted by farmers due to
the simpler trial designs, potential for more ‘regional coherence’ (farms, groups of nearby
farms, districts, regions, etc.) and possibly the smaller amount of data required from a single
location to build effective models.
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Conclusion

This study investigated the implications of OFE strategies for the spatial characteristics of
field data and how this, in turn, affects the development of ML decision models for N fer-
tiliser management. The analysis focused specifically on the effect of trial design on spatial
autocorrelation in field data and its impact on model training and whether regionalisation
of OFE data could improve the performance of prediction models. Twenty-one N strip tri-
als spread across Australia were used to develop ML models for optimal N rate and grain
yield prediction using a range of scenarios of data autocorrelation and model geographical
coverage.

In this study, spatial autocorrelation in OFE data had negligible impact on model perfor-
mance. Likewise, abundant yet autocorrelated data did not add extra value for the model
either. Overall, in obtaining data for constructing ML models, OFE designs can follow more
pragmatic considerations. For example, less replicated strip or plot-based trials providing
fewer but strategically distributed observations in contrasting regions of a field might be
preferable — for their simplicity and pragmatism — to highly replicated designs that aim to
cover the entire extent of a field. Similarly, in order to obtain diverse and independent data,
increasing the number of experiments in different locations and years might be preferable to
increasing the spatial coverage of observations within a single experiment.

In finding the right combination of data from different trials, limiting the geographical
extent of an OFE trial network may improve model performance compared to a global
model encompassing areas with distinct agronomic and climatic characteristics. This strat-
egy reduces the variability of conditions under which the models are implemented. How-
ever, it will be essential to define the geographical coverage of such OFE network based on
relevant field characteristics and expert agronomic knowledge so that regions are sensible
from an agronomic perspective with further work in this area highly desirable.
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