When layers play the lottery, all tickets win at initialization (2023)
- Authors:
- Autor USP: CORREIA, ARTUR JORDÃO LIMA - EP
- Unidade: EP
- DOI: 10.1109/ICCVW60793.2023.00130
- Subjects: VISÃO COMPUTACIONAL; ROBUSTEZ; REDES E COMUNICAÇÃO DE DADOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2023
- Source:
- Título: ICCVW
- Conference titles: International Conference on Computer Vision Workshops
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
CORREIA, Artur Jordão Lima et al. When layers play the lottery, all tickets win at initialization. 2023, Anais.. Piscataway: IEEE, 2023. Disponível em: https://dx.doi.org/10.1109/ICCVW60793.2023.00130. Acesso em: 31 dez. 2025. -
APA
Correia, A. J. L., Araújo, G. C. de, Maia, H. de A., & Pedrini, H. (2023). When layers play the lottery, all tickets win at initialization. In ICCVW. Piscataway: IEEE. doi:10.1109/ICCVW60793.2023.00130 -
NLM
Correia AJL, Araújo GC de, Maia H de A, Pedrini H. When layers play the lottery, all tickets win at initialization [Internet]. ICCVW. 2023 ;[citado 2025 dez. 31 ] Available from: https://dx.doi.org/10.1109/ICCVW60793.2023.00130 -
Vancouver
Correia AJL, Araújo GC de, Maia H de A, Pedrini H. When layers play the lottery, all tickets win at initialization [Internet]. ICCVW. 2023 ;[citado 2025 dez. 31 ] Available from: https://dx.doi.org/10.1109/ICCVW60793.2023.00130 - Towards automatic and accurate core-log processing
- Detection and classification of animal crossings on roads using IoT-based WiFi sensing
- Pruning everything, everywhere, all at once
- Layer pruning with consensus: A triple-win solution
- One period to rule them all: identifying critical learning periods in deep networks
- Enhancing distilled datasets via natural data mixing
- Effective layer pruning through similarity metric perspective
- Efficient LLMs with AMP: attention heads and MLP pruning
- Improving current forecast by leveraging measured data and numerical models via LiESNs
- Tiny titans: Efficient large vision, language and multimodal models through pruning
Informações sobre o DOI: 10.1109/ICCVW60793.2023.00130 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| When_Layers_Play_the_Lott... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
