Interpretability analysis of deep models for COVID-19 detection (2024)
- Authors:
- Silva, Daniel Peixoto Pinto da

- Casanova, Edresson

- Gris, Lucas Rafael Stefanel

- Gauy, Marcelo Matheus

- Candido Junior, Arnaldo

- Finger, Marcelo

- Svartman, Flaviane Romani Fernandes

- Medeiros, Beatriz Raposo de

- Martins, Marcus Vinícius Moreira

- Aluísio, Sandra Maria

- Berti, Larissa Cristina

- Teixeira, João Paulo

- Silva, Daniel Peixoto Pinto da
- USP affiliated authors: FINGER, MARCELO - IME ; SVARTMAN, FLAVIANE ROMANI FERNANDES - FFLCH ; MEDEIROS, BEATRIZ RAPOSO DE - FFLCH ; ALUISIO, SANDRA MARIA - ICMC ; CASANOVA, EDRESSON - ICMC ; GAUY, MARCELO MATHEUS - IME
- Unidades: IME; FFLCH; ICMC
- DOI: 10.36922/aih.2992
- Subjects: REDES NEURAIS; RECONHECIMENTO DA FALA; TECNOLOGIAS DA SAÚDE; COVID-19
- Keywords: Coronavirus disease 2019 detection; Voice processing; Gradient-weight class activation mapping
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Artificial Intelligence in Health
- ISSN: 3041-0894
- Volume/Número/Paginação/Ano: v. 1, n. 3, p. 114-126, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SILVA, Daniel Peixoto Pinto da et al. Interpretability analysis of deep models for COVID-19 detection. Artificial Intelligence in Health, v. 1, n. 3, p. 114-126, 2024Tradução . . Disponível em: https://doi.org/10.36922/aih.2992. Acesso em: 09 fev. 2026. -
APA
Silva, D. P. P. da, Casanova, E., Gris, L. R. S., Gauy, M. M., Candido Junior, A., Finger, M., et al. (2024). Interpretability analysis of deep models for COVID-19 detection. Artificial Intelligence in Health, 1( 3), 114-126. doi:10.36922/aih.2992 -
NLM
Silva DPP da, Casanova E, Gris LRS, Gauy MM, Candido Junior A, Finger M, Svartman FRF, Medeiros BR de, Martins MVM, Aluísio SM, Berti LC, Teixeira JP. Interpretability analysis of deep models for COVID-19 detection [Internet]. Artificial Intelligence in Health. 2024 ; 1( 3): 114-126.[citado 2026 fev. 09 ] Available from: https://doi.org/10.36922/aih.2992 -
Vancouver
Silva DPP da, Casanova E, Gris LRS, Gauy MM, Candido Junior A, Finger M, Svartman FRF, Medeiros BR de, Martins MVM, Aluísio SM, Berti LC, Teixeira JP. Interpretability analysis of deep models for COVID-19 detection [Internet]. Artificial Intelligence in Health. 2024 ; 1( 3): 114-126.[citado 2026 fev. 09 ] Available from: https://doi.org/10.36922/aih.2992 - Acoustic characteristics of voice and speech in post-COVID-19
- Pretrained audio neural networks for speech emotion recognition in Portuguese
- Audio MFCC-gram Transformers for respiratory insufficiency detection in COVID-19
- Deep learning approaches for speech synthesis and speaker verification
- Evaluating sentence segmentation in different datasets of neuropsychological language tests in brazilian portuguese
- Temporal prosodic cues for COVID-19 in Brazilian Portuguese speakers
- Detecting respiratory insufficiency by voice analysis: the SPIRA project
- Discriminant audio properties in deep learning based respiratory insufficiency detection in brazilian portuguese
- Transfer learning and data augmentation techniques to the COVID-19 identification tasks in ComParE 2021
- Evaluating semantic similarity methods to build semantic predictability norms of reading data
Informações sobre o DOI: 10.36922/aih.2992 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3236584.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
