Evaluating semantic similarity methods to build semantic predictability norms of reading data (2021)
- Authors:
- USP affiliated authors: ALUISIO, SANDRA MARIA - ICMC ; LEAL, SIDNEY EVALDO - ICMC ; CASANOVA, EDRESSON - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-030-83527-9_3
- Subjects: PROCESSAMENTO DE LINGUAGEM NATURAL; LINGUÍSTICA DE CORPUS; SEMÂNTICA; PORTUGUÊS DO BRASIL
- Keywords: Semantic predictability; Cloze test; Language models
- Language: Inglês
- Imprenta:
- Source:
- Título: Lecture Notes in Artificial Intelligence
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 12848, p. 35-47, 2021
- Conference titles: International Conference on Text, Speech, and Dialogue - TSD
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
LEAL, Sidney Evaldo et al. Evaluating semantic similarity methods to build semantic predictability norms of reading data. Lecture Notes in Artificial Intelligence. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-030-83527-9_3. Acesso em: 31 out. 2024. , 2021 -
APA
Leal, S. E., Casanova, E., Paetzold, G. H., & Aluísio, S. M. (2021). Evaluating semantic similarity methods to build semantic predictability norms of reading data. Lecture Notes in Artificial Intelligence. Cham: Springer. doi:10.1007/978-3-030-83527-9_3 -
NLM
Leal SE, Casanova E, Paetzold GH, Aluísio SM. Evaluating semantic similarity methods to build semantic predictability norms of reading data [Internet]. Lecture Notes in Artificial Intelligence. 2021 ; 12848 35-47.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/978-3-030-83527-9_3 -
Vancouver
Leal SE, Casanova E, Paetzold GH, Aluísio SM. Evaluating semantic similarity methods to build semantic predictability norms of reading data [Internet]. Lecture Notes in Artificial Intelligence. 2021 ; 12848 35-47.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/978-3-030-83527-9_3 - Complexidade textual e suas tarefas relacionadas
- Métodos de clusterização para a criação de corpus para rastreamento ocular durante a leitura de parágrafos em português
- Using eye-tracking data to predict the readability of brazilian portuguese sentences in single-task, multi-task and sequential transfer learning approaches
- Avaliação automática da complexidade de sentenças do português brasileiro para o domínio rural
- Deep learning approaches for speech synthesis and speaker verification
- Automatic assessment of connected speech and its relation to memory in Alzheimer's disease in low education
- RastrOS Project: natural language processing contributions to the development of an eye‑tracking corpus with predictability norms for brazilian portuguese
- Evaluating sentence segmentation in different datasets of neuropsychological language tests in brazilian portuguese
- NILC-Metrix: assessing the complexity of written and spoken language in Brazilian Portuguese
- SC-GlowTTS: an efficient zero-shot multi-speaker text-to-speech model
Informações sobre o DOI: 10.1007/978-3-030-83527-9_3 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3041123.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas