Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] (2024)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1016/j.na.2023.113389
- Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS; ANÁLISE GLOBAL
- Language: Inglês
- Imprenta:
- Source:
- Título: Nonlinear Analysis
- ISSN: 0362-546X
- Volume/Número/Paginação/Ano: v. 238, art. 113389, p. 1-9, jan 2024
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BENCI, Vieri et al. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851]. Nonlinear Analysis, v. 238, p. 1-9, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.na.2023.113389. Acesso em: 13 jun. 2025. -
APA
Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2024). Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851]. Nonlinear Analysis, 238, 1-9. doi:10.1016/j.na.2023.113389 -
NLM
Benci V, Nardulli S, Acevedo LEO, Piccione P. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] [Internet]. Nonlinear Analysis. 2024 ; 238 1-9.[citado 2025 jun. 13 ] Available from: https://doi.org/10.1016/j.na.2023.113389 -
Vancouver
Benci V, Nardulli S, Acevedo LEO, Piccione P. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] [Internet]. Nonlinear Analysis. 2024 ; 238 1-9.[citado 2025 jun. 13 ] Available from: https://doi.org/10.1016/j.na.2023.113389 - A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation
- A variational theory for hight rays on Lorentz manifolds
- Shortening null geodesics in Lorentzian manifolds: applications to closed light rays
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- On the finiteness of light rays between a source and an observer on conformally stationary space-times
- New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court
- Preface
- Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint
- Quantitative profile decomposition and stability for a nonlocal Sobolev inequality
- On the relative category in the brake orbits problem
Informações sobre o DOI: 10.1016/j.na.2023.113389 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas