Tidal evolution and spin–orbit dynamics for bodies in the viscous regime (2024)
- Authors:
- Autor USP: RAGAZZO, CLODOALDO GROTTA - IME
- Unidade: IME
- DOI: 10.1007/s10569-024-10215-1
- Assunto: MATEMÁTICA APLICADA
- Keywords: Tides; Spin-orbit resonance; Secular evolution; Fast-slow system; Viscoelastic rheology
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Celestial Mechanics and Dynamical Astronomy
- ISSN: 0923-2958
- Volume/Número/Paginação/Ano: v. 136, artigo n. 44, p. 1-30, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RAGAZZO, Clodoaldo Grotta e RUIZ, Lucas S. Tidal evolution and spin–orbit dynamics for bodies in the viscous regime. Celestial Mechanics and Dynamical Astronomy, v. 136, n. artigo 44, p. 1-30, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10569-024-10215-1. Acesso em: 25 jan. 2026. -
APA
Ragazzo, C. G., & Ruiz, L. S. (2024). Tidal evolution and spin–orbit dynamics for bodies in the viscous regime. Celestial Mechanics and Dynamical Astronomy, 136( artigo 44), 1-30. doi:10.1007/s10569-024-10215-1 -
NLM
Ragazzo CG, Ruiz LS. Tidal evolution and spin–orbit dynamics for bodies in the viscous regime [Internet]. Celestial Mechanics and Dynamical Astronomy. 2024 ; 136( artigo 44): 1-30.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10569-024-10215-1 -
Vancouver
Ragazzo CG, Ruiz LS. Tidal evolution and spin–orbit dynamics for bodies in the viscous regime [Internet]. Celestial Mechanics and Dynamical Astronomy. 2024 ; 136( artigo 44): 1-30.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10569-024-10215-1 - Chaos and integrability in a nonlinear wave equation
- On the motion of two-dimensional vortices with mass
- An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle
- On the dynamics near resonant equilibria
- Critical number in scattering and escaping problems in classical mechanics
- Dynamics of many bodies in a liquid: Added-mass tensor of compounded bodies and systems with a fast oscillating body
- Scalar Autonomous Second Order Ordinary Differential Equations
- Dynamic mean flow and small-scale interaction through topographic stress
- Stability of homoclinic orbits and diffusion in phase space
- On the stability of some periodic orbits of a new type for twist maps
Informações sobre o DOI: 10.1007/s10569-024-10215-1 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3234553_-_Tidal_evolution... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
